An Etymological Dictionary of Astronomy and Astrophysics
English-French-Persian

فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

M. Heydari-Malayeri    -    Paris Observatory

   Homepage   
   


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Notice: Undefined offset: 25 in /var/www/dictionary/searchDisplayPaging.php on line 18
<< < -he Haf hal har har HD hea hel hel Her Her hid hig hip hol hor hos hov Hub Hum Hyd hyd hyd hyp hys > >>

Number of Results: 481
high-energy astrophysics
  اخترفیزیک ِ مه‌کاروژ   
axtarfizik-e meh-kâruž

Fr.: astrophysique des hautes énergies   

A branch of astrophysics that deals with objects emitting highly energetic radiation, such as X-ray astronomy, gamma-ray astronomy, and extreme ultraviolet astronomy, as well as neutrinos and cosmic rays.

high; → energy; → astrophysics.

high-energy cosmic rays
  پرتوهای ِ کیهانی ِ مه‌کاروژ، ~ ~ پرکاروژ   
partowhâ-ye keyhâni-ye meh-kâruž, ~ ~ por-kâruž

Fr.: rayons cosmiques de hautes énergies   

Cosmic rays which typically have energies in the range 1015 to 1020 electron volts. For the most part, they are protons and other atomic nuclei, and come from distant cosmos, perhaps even from outside our own Galaxy.

high; → energy; → cosmic; → ray.

high-energy neutrino
  نوترینو‌ی ِ مه‌کاروژ   
notrino-ye meh-kâruž

Fr.: neutrino haute énergie   

A neutrino produced in high-energy particle collisions, such as those occurring when → cosmic rays strike atoms in the Earth's → atmosphere. Their energy range expands from a few → MeVs up to tenths of a → peta- (P) → electron-volts.

high; → energy; → neutrino.

high-excitation blob (HEB)
  ژیگ ِ پر-بر‌انگیزش   
žig-e por-barangizeš

Fr.:   

A rare class of → H II regions in the → Magellanic Clouds. In contrast to the typical H II regions of the Magellanic Clouds, which are extended structures (sizes of several arc minutes corresponding to more than 50 pc, powered by a large number of exciting stars), HEBs are very dense and small regions (~ 4" to 10" in diameter corresponding to ~ 1-3 pc). They have a higher degree of → excitation ([O III] 5007Å /Hβ) with respect to the typical H II regions, and are, in general, heavily affected by local → dust. They are powered by a relatively smaller number of → massive stars.

high; → excitation; → blob.

high-mass star
  ستاره‌ی ِ مِه‌جرم، ~ پُرجرم   
setâre-ye meh-jerm (#), ~ por-jerm (#)

Fr.: étoile massive   

A star whose mass exceeds 8 solar masses. Same as → massive star. → intermediate-mass star; → low-mass star.

high; → mass; → star.

high-mass X-ray binary (HMXB)
  درین ِ پرتو ایکس ِ پرجرم   
dorin-e partow-e iks-e por-jerm

Fr.: binaire X de forte masse   

A member of one of the two main classes of → X-ray binary systems where one of the components is a neutron star or a black hole and the other one a → massive star. HMXBs emit relatively → hard X-rays and usually show regular pulsations, no X-ray bursts, and often X-ray eclipses. Their X-ray luminosity is much larger than their optical luminosity. In our Galaxy HMXBs are found predominantly in the → spiral arms and within the → Galactic disk in young → stellar populations less than 107 years old. One of the most famous HMXB is Cygnus X-1 which was the first stellar-mass black hole discovered. See also: → low-mass X-ray binary.

high; → mass; → X-ray; → binary.

high-power laser
  لیزر ِ پُرتوان   
leyzer-e por-tavân (#)

Fr.: laser de puissance   

A laser beam with the output power in the range 1012-1015 watts/cm2, capable of depositing kilo-joule order energies during nano-second time intervals in small volumes (about 1 mm3). High power lasers, which can produce temperatures of 10-50 million degrees and pressures of 10-100 million bars, are used to simulate astrophysical conditions in laboratories.

high; → power;, → laser.

leyzer, → laser; por "much, many, full," → full; tavân, → power.

high-resolution observation
  نپاهش ِ مه-واگشود   
nepâheš-e mehvâgošud

Fr.: observation à haute résolution   

An observation that provides a particularly narrow, peaked image of a point source. → point spread function.

high; → resolution; → observation.

high-velocity clouds (HVCs)
  ابرهای ِ تندرو   
abrhâ-ye tondrow

Fr.: nuages à grande vitesse   

A population of neutral or partly ionized gas clouds in the → Galactic halo which are seen as high-altitude structures in the → atomic hydrogen  → 21 cm emission at high radial velocities (vLSR > 100 km/sec). They have substantial neutral → column densities (> 1019 cm-2) and their → metallicities range from 0.1 to about 1.0 times solar. The distances to the majority of them remain unknown. They may represent the continuing infall of matter onto the → Local Group. See also → compact high-velocity clouds.

high; → velocity; → cloud.

highland
  کوهسار   
kuhsâr (#)

Fr.: région montagneuse, hauts plateaux   

A mountainous or elevated region; → plateau.

high; → land.

Kuhsâr "mountainous, hilly area," from kuh, → mountain, + -sâr suffix denoting profusion, abundance, variant -zâr, → catastrophe.

highly siderophile element (HSE)
  بن‌پار ِ بسیار آهندوست   
bonpâr-e besyâr âhandust

Fr.: élément hautement sidérophile   

A → chemical element that is → geochemically characterized as having a strong → affinity to partition into → metals relative to → silicates. The highly siderophile elements, → ruthenium (Ru), → rhodium (Rh), → palladium (Pd), → rhenium (Re), → osmium (Os), → iridium (Ir), → platinum (Pt), and → gold (Au), are of interest to planetary scientists because they give insights into the early history of → accretion and → differentiation. HSEs prefer to reside in the metal of planetary cores. Therefore, the HSEs found in planetary → mantles are considered to be overabundant relative to their known preferences for metal over silicate. Therefore, it has been inferred that processes other than → equilibrium partitioning have been responsible for establishing the abundances of → mantle siderophiles. A detailed understanding of the absolute → concentrations and relative abundances of the HSEs may therefore give important insights into the earliest history of a planet (Jones et al., 2003, Chemical Geology 196, 21).

From Gk. sidero-, from sideros "iron" + → -phile.

Âhandust, from âhan, → iron, + -dust, → -phile.

hike
  ۱) ونیژ؛ ۲) ونیژیدن   
1) vaniž 2) vanižidan

Fr.: 1) randonnée; 2) marcher à pied   

1) A long walk or march for recreational activity, military training, or the like.
2) To walk or march a great distance, especially through rural areas, for pleasure, exercise, military training, or the like (Dictionary.com).

From E. dialectal hyke "to walk vigorously," maybe a Northern form of hitch "to move or draw (something) with a jerk," of unknown origin.

Vaniž, from Sangesari wəniž-/wəništ "to walk about, go round;" cf. Shughni näγ-, Roshani niγ-, naγên- "to turn round;" Book Pahlavi/Zoroastrian Mid.Pers. nâz-, nâž- "to roll, turn;" Mid.Pers. nâys- "be proud, delicate."

Hilbert space
  فضا‌ی ِ هیلبرت   
fazâ-ye Hilbert (#)

Fr.: espace de Hilbert, espace hilbertien   

A generalization of Euclidean space in a way that extends methods of vector algebra from the two- and three-dimensional spaces to infinite-dimensional spaces.
Multi-dimensional space in which the eigenfunctions of quantum mechanics are represented by orthogonal unit vectors.

Named after the German mathematician David Hilbert (1862-1943), recognized as one of the most influential mathematicians of the 19th and early 20th centuries for his numerous contributions to various areas of mathematics; → space.

Hilda asteroids
  سیارک‌های ِ هیلدا   
sayyârakhâ-ye Hilda (#)

Fr.: astéroides Hida   

The asteroids found on the outer edge of the main asteroid belt in a 2:3 orbital resonance with Jupiter. The group is not an asteroid family since the members are not physically related. The group consists of asteroids with semi-major axes between 3.70 AU and 4.20 AU, eccentricities less than 0.30, and inclinations less than 20°. It is dominated by D- and P-type asteroids.

Named for the prototype 153 Hilda, discovered by Johann Palisa (1848-1925) on November 2, 1875, and named Hilda after a daughter of his teacher, the astronomer Theodor von Oppolzer (1841-1886); → asteroid.

hill
  تپه   
tappé (#)

Fr.: colline   

A natural elevation of the earth's surface, smaller than a mountain.

M.E.; O.E. hyll, from P.Gmc. *khulnis (cf. M.Du. hille, Low Ger. hull "hill," O.N. hallr "stone," Goth. hallus "rock," O.E. holm "rising land, island"), from PIE base *kel- "to rise, to be prominent" (cf. Skt. kuta- "summit, peak;" Mod.Pers. kutal, kotal high hill, the skirts of a hill;" Tabari dialect keti "hill; top of the head; L. collis "hill," culmen "top, summit," cellere "raise," celsus "high;" Gk. kolonos "hill," kolophon "summit;" Lith. kalnas "mountain," kalnelis "hill").

Tappé "hill."

Hill sphere
  سپهر ِ هیل   
sepehr-e Hill

Fr.: sphère de Hill   

The spherical region around a → secondary in which the secondary's gravity is more important for the motion of a particle about the secondary than the tidal influence of the → primary. The radius is described by the formula: r = a (m/3M)1/3, where, in the case of the Earth, a is the semi-major axis of the orbit around the Sun, m is the mass of Earth, and M is the mass of the Sun. The Hill sphere for the Earth has a radius of 0.01 → astronomical units (AU). Therefore the Moon, lying at a distance of 0.0025 AU, is well within the Hill sphere of the Earth.

Named for George William Hill (1838-1914), an American astronomer who described this sphere of influence; → sphere.

Hill stability
  پایداری ِ هیل   
pâydâri-ye Hill

Fr.: stabilité de Hill   

The condition for the stability of a → three-body system. Three-body systems exist widely in the → solar system and → extrasolar systems, including Sun-planet-moon systems, planets-star systems, and → triple star systems. This concept of stability was introduced by Hill (1878). He used the → Jacobi integral to construct bounds of motion for → conservative systems with time-independent → potentials, which was introduced to study the stability of the Moon in the Sun-Earth → restricted three-body problem. The stability is defined by the → zero-velocity surface based on the Jacobi integral. The concept of the Hill stability has been used by many researchers to study the stability of three-body systems. The studies include the Hill stability in the full → three-body problems, the hierarchical three body problems, and the restricted three body problems (See, e.g., S. Gong & J. Li, 2015, Astrophys Space Sci. 358,37).

Hill, G.W.: Researches in the lunar theory. Am. J. Math. 1(2), 129-147 (1878); → stability.

Hills mechanism
  ساز-و-کار ِ هیلز   
sâzokâr-e Hills

Fr.: mécanisme de Hills   

A process in which a → close encounter between a → tightly bound binary star system and a → supermassive black hole causes one binary component to become bound to the black hole and the other to be ejected at very high velocities, up to 4,000 km s-1. → hypervelocity star.

Hills, J. G, "Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole," Nature 331, 687; → mechanism.

Himalia (Jupiter VI)
  هیمالیا   
Himâliyâ (#)

Fr.: Himalia   

The tenth of Jupiter's known satellites, 186 km in diameter revolving at a mean distance of 11,480,000 km from Jupiter. Discovered in 1904 by the Argentine-American astronomer Charles Dillon Perrine (1867-1951).

Himalia was a nymph of the island of Rhodes. She was seduced by the god Zeus (Jupiter).

Hindu-Arabic numeral system
  راژمان ِ عددهای ِ هندی-عربی   
râžmân-e adadhâ-ye Hendi-Arabi

Fr.: numération indo-arabe   

Same as → Indian numeral system.

numeral; → system.


Notice: Undefined offset: 25 in /var/www/dictionary/searchDisplayPaging.php on line 18
<< < -he Haf hal har har HD hea hel hel Her Her hid hig hip hol hor hos hov Hub Hum Hyd hyd hyd hyp hys > >>