<< < -ti Tam Tay tel ten Ter Tha the the the thi thr tib tid tim tok Tor tot tra tra tra tra Tri tri tro tru tur twi Typ > >>
thermal radiation tâbeš-e garmâyi (#) Fr.: rayonnement thermique The energy radiated from an object in the form of → electromagnetic waves as a result of its → temperature. Thermal radiation ranges in → wavelength from the longest → infrared radiation through the → visible light spectrum to the shortest → ultraviolet rays. In opposition, → non-thermal radiation is caused by energetic particles. |
thermal shock toš-e garmâyi, šok-e ~ Fr.: choc thermique Stresses induced in a material because of rapid temperature change or a → thermal gradient . |
thermal spike sixak-e garmâyi Fr.: pointe thermale A → transient → rise in → temperature above the normal level in a medium. |
thermal support pâdir-e garmâyi Fr.: support thermique In star formation models, the gas pressure that counters the collapsing pull of gravity. |
thermalization yekgarmâyi Fr.: thermalisation 1) The process by which a system reaches → thermal equilibrium.
Thermalization results from energy exchange between the
components constituting the system and their exchange with the outside medium.
In a gas at a given temperature, molecules move with different velocities.
The gas temperature corresponds to the mean velocity of the molecules, but individual
molecules may deviate largely from the mean velocity. Some move very fast others
slowly and change velocity upon collisions. Collisions reduce the energy of
fast moving molecules and increase that of slow ones.
In the process of thermalization
→ matter and → radiation
are in constant interaction such that their → temperatures
become identical.
The process goes on until energy distribution reaches
→ equilibrium.
The system is said to be → thermalized. Verbal noun of → thermalize. |
thermalize yekgarmâyidan Fr.: thermaliser To bring neutrons into → thermal equilibrium with their surroundings; to produce → thermal neutrons. Yekgarmâyidan, literally "equal warming," from yek-, → one, + garmâyidan, infinitive from garmâ, → thermo-. |
thermalized line xatt-e yekgarmâyidé Fr.: raie thermalisée A collisionally excited spectral line formed in high density condition well above the → critical density. At such densities the → excitation temperature is at (or very near) the → kinetic temperature of the gas. At low densities, below the critical density, the excitation temperature will be only slightly above the radiation temperature and the emission line will be practically invisible. Thermalized, p.p. of → thermalize; → line. |
thermion garmâyon Fr.: thermion An electron that has been emitted from a heated body such as the hot cathode of an electron tube. |
thermionic emission gosil-e garmâyoni Fr.: émission thermionique Electrons gaining enough thermal energy to escape spontaneously from the cathode or dynodes and mimic photoelectrons. |
thermo- garmâ- (#) Fr.: thermo- A combining form meaning "heat, hot," used in the formation of compound words. Also therm- before a vowel. From Gk. therme "heat," thermos "hot;" cf. L. fornax "oven, kiln," related to fornus, furnus "oven," and to formus "warm;" cognate with Pers. garm "warm," as below; P.Gmc. *warmaz (O.E. wearm; E. warm; O.H.G., Ger. warm). Garmâ "heat, warmth," from Mid.Pers. garmâg; O.Pers./Av. garəma- "hot, warm;" cf. Skt. gharmah "heat;" cognate with Gk. therme, thermos, as above; PIE *ghworm-/*ghwerm- "warm." |
thermocline damâšib (#) Fr.: thermocline A layer in a large body of water, such as a lake, in which temperature changes more rapidly with depth than it does in the layers above or below. |
thermocouple damâjoft (#) Fr.: thermocouple Electrical circuit consisting of two dissimilar metals, in which an electromotive force is produced when the two junctions are at different temperatures. |
thermodynamic garmâtavânik Fr.: thermodynamique Of or pertaining to → thermodynamics. |
thermodynamic equilibrium tarâzmandi-ye garmâtavânik Fr.: équilibre thermodynamique The condition of a → thermodynamic system in which the available → energy is distributed uniformly among all the possible forms of energy. Furthermore, all → thermodynamic process es must be exactly balanced by their reverse processes. For example, inside a star there will be as many → ionizations of helium per second as there are → recombinations of free electrons and helium ions. Se also → local thermodynamic equilibrium (LTE). → thermodynamic; → equilibrium. |
thermodynamic path pah-e garmâtavânik Fr.: chemin thermodynamique The loci of various changes between two → states through which a → thermodynamic system passes during a → thermodynamic process. → thermodynamic; → path. |
thermodynamic potential tavand-e garmâtavânik Fr.: potentiel thermodynaique A measure of the energy level of a → thermodynamic system. It represents the amount of → work obtainable when the system undergoes a → change. The main types of thermodynamic potential are: → internal energy, → enthalpy, the → Helmholtz free energy, and the → Gibbs free energy. → thermodynamic; → potential. |
thermodynamic process farâravand-e garmâtavânik Fr.: processus thermodynamique An ordered set of → equilibrium states undergone by a → thermodynamic system. Thermodynamics processes have various types: → cyclic process, → reversible process, and → irreversible process, → isothermal process, → adiabatic process, → isentropic process. → thermodynamic; → process. |
thermodynamic system râžmân-e garmâtavânik Fr.: système thermodynamique A quantity of substance or a working machine which in a well-defined way is set apart from its → environment. The boundary between the system and its surroundings can be real or an imaginary mathematical envelope. A thermodynamic system is not necessarily bound to a predefined geometry. Thermodynamic systems can be divided into three types: → open systems, → closed systems, and → isomated systems. → thermodynamic; → system. |
thermodynamic temperature damâ-ye garmâtavânik Fr.: température thermodynamique A temperature scale, measured in → kelvin (K), that is related to the energy possessed by matter; it was formerly known as → absolute temperature. The zero point on the scale (0 K) is absolute zero. Thermodynamic temperature can be converted to temperature on the → Celsius scale by subtracting 273.15. → thermodynamic; → temperature. |
thermodynamics garmâtavânik Fr.: thermodynamique A branch of physics concerned with the relations between heat and other forms of energy and how these affect temperature, pressure, volume, mechanical action, and work. → thermo-; → dynamics, coined by the Scottish physicist William Thomson (Lord Kelvin, 1824-1907), in 1849. |
<< < -ti Tam Tay tel ten Ter Tha the the the thi thr tib tid tim tok Tor tot tra tra tra tra Tri tri tro tru tur twi Typ > >>