An Etymological Dictionary of Astronomy and Astrophysics
English-French-Persian

فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

M. Heydari-Malayeri    -    Paris Observatory

   Homepage   
   


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Number of Results: 8 Search : Maxwell
maxwell (Mx)
  ماکسول   
maxwell (#)

Fr.: maxwell   

The unit of → magnetic flux. The flux through 1 square cm normal to a magnetic field of 1 → gauss. It is equal to 10-8 → weber (Wb)s.

After James Clerk Maxwell (1831-1879), British outstanding physicist, who made fundamental contributions to electromagnetic theory and the kinetic theory of gases.

Maxwell bridge
  پل ِ ماکسول   
pol-e Maxwell

Fr.: pont de Maxwell   

A type of → Wheatstone bridge used for measuring → inductance in terms of → resistance and → capacitance.

maxwell; → bridge.

Maxwell gap
  گاف ِ ماکسول   
gâf-e Mawxell

Fr.: division de Maxwell   

A division in Saturn's ring in the outer part of the C ring. It is about 87500 km from Saturn's center and is 500 km wide. The gap was discovered in 1980 by Voyager 1.

Not discovered by J. C. Maxwell, but named in his honor; → maxwell; → gap.

Maxwell's demon
  پری ِ ماکسول   
pari-ye Maxwell

Fr.: démon de Maxwell   

A → thought experiment meant to raise questions about the possibility of violating the → second law of thermodynamics. A wall separates two compartments filled with gas. A little "demon" sits by a tiny trap door in the wall. He is able to sort hot (faster) molecules from cold molecules without expending energy, thus bringing about a general decrease in → entropy and violating the second law of thermodynamics. The → paradox is explained by the fact that such a demon would still need to use energy to observe and sort the molecules. Thus the total entropy of the system still increases.

Named after James Clerk Maxwell (→ maxwell), who first thought of this experiment; → demon.

Maxwell's equations
  هموگش‌های ِ ماکسول   
hamugešhâ-ye Maxwell

Fr.: équations de Maxwell   

A set of four fundamental equations that describe the electric and magnetic fields arising from varying electric charges and magnetic fields, electric currents, charge distributions, and how those fields change in time. In their vector differential form, these equations are:
i) ∇.E = ρ/ε0 (→ Gauss's law for electricity),
ii) ∇.B = 0 (→ Gauss's law for magnetism),
iii) x E = -∂B/∂t (→ Faraday's law of induction),
iv) x B = μ0J + μ0ε0E/∂t (→ Ampere's law), with c2 = 1/(μ0ε0), where E is → electric intensity, B is → magnetic flux density, ρ is → charge density, ε0 is → permittivity, μ0 is → permeability, J is → current density, and c is → speed of light.

maxwell. It should be emphasized that the equations originally published by James Clerk Maxwell in 1873 (in A Treatise on Electricity and Magnetism) were 20 in number, had 20 variables, and were in scalar form. The German physicist Heinrich Rudolf Hertz (1857-1894) reduced them to 12 scalar equations (1884). It was the English mathematician/physicist Oliver Heaviside (1850-1925) who expressed Maxwell's equations in vector form using the notations of → gradient, → divergence, and → curl of a vector, thus simplifying them to the present 4 equations (1886). Before Einstein these equations were known as Maxwell-Heaviside-Hertz equations, Einstein (1940) popularized the name "Maxwell's Equations;" → equation.

Maxwell's rule
  رزن ِ ماکسول   
razan-e Maxwell

Fr.: règle de Maxwell   

Every part of a deformable electric circuit tends to move in such a direction as to enclose the maximum magnetic flux.

maxwell; → rule.

Maxwell-Boltzmann distribution
  واباژش ِ ماکسول-بولتسمان   
vibâžš-e Maxwell-Boltzmann

Fr.: distribution de Maxwell-Boltzmann   

The distribution law for kinetic energies (or, equivalently, speeds) of molecules of an ideal gas in equilibrium at a given temperature.

maxwell; → Boltzmann's constant; → distribution.

Newton-Maxwell incompatibility
  ناسازگاری ِ نیوتن-ماکسول   
nâsâzgâri-ye Newton-Maxwell

Fr.: incompatibilité entre Newton et Maxwell   

The incompatibility between → Galilean relativity and Mawxell's theory of → electromagnetism. Maxwell demonstrated that electrical and magnetic fields propagate as waves in space. The propagation speed of these waves in a vacuum is given by the expression c = (ε00)-0.5, where ε0 is the electric → permittivity and μ0 is the magnetic → permeability, both → physical constants. Maxwell noticed that this value corresponds exactly to the → speed of light in vacuum. This implies, however, that the speed of light must also be a universal constant, just as are the electrical and the magnetic field constants! The problem is that → Maxwell's equations do not relate this velocity to an absolute background and specify no → reference frame against which it is measured. If we accept that the principle of relativity not only applies to mechanics, then it must also be true that Maxwell's equations apply in any → inertial frame, with the same values for the universal constants. Therefore, the speed of light should be independent of the movement of its source. This, however, contradicts the vector addition of velocities, which is a verified principle within → Newtonian mechanics. Einstein was bold enough to conclude that the principle of Newtonian relativity and Maxwell's theory of electromagnetism are incompatible! In other words, the → Galilean transformation and the → Newtonian relativity principle based on this transformation were wrong. There exists, therefore, a new relativity principle, → Einsteinian relativity, for both mechanics and electrodynamics that is based on the → Lorentz transformation.

Newton; → Maxwell; → incompatibility.