dependent vâbasté (#) Fr.: dépendant 1) General: Determined or conditioned by something else. M.E. dependant, from M.Fr., pr.p. of dépendre, from L. dependere, from → de- + pendere "to hang, be suspended," PIE base *(s)pen(d)- "to pull, stretch." Vâbasté, from vâ-→ de- + basté p.p. of bastan "to bind, shut," from Mid.Pers. bastan/vastan "to bind, shut," Av./O.Pers. band- "to bind, fetter," banda- "band, tie," cf. Skt. bandh- "to bind, tie, fasten," PIE *bhendh- "to bind" (Ger. binden, E. bind). |
dependent variable vartande-ye vâbasté Fr.: variable dépendante Math.: A variable whose value depends on the value assigned to another value. For example, in the equation y = 2x, the value of y depends on that of x. See also → independent variable. |
independent nâvâbasté (#) Fr.: indépendant Not dependent. |
independent events ruydâdhâ-ye nâvâbasté (#) Fr.: événements indépendants Statistics: Two events if the occurrence of one of them gives no → information about whether or not the other event will occur; these events have no influence on each other. → independent; → event. |
independent random variables vatandehâ-ye kâture-ye nâvâbasté Fr.: variables aléatoires indépendantes Statistics: Two random variables X and Y if and only if the value of X has no influence on the value of Y and vice versa. |
independent variable Fr.: variable indépendante Math.: A variable whose value determines the value of other variables. For example, x, in the expression y = f(x), is the independent variable. See also → dependent variable. → independent; → variable. |
linearly dependent xattâné vâbasté Fr.: linéairement dépendant A set of objects x1, x2, ..., xn (→ vectors, → matrices, → polynomials, etc.) on a given set if there is a linear combination of them: a1x1 + a2x2 + ... + anxn, which is zero, but at least one of the coefficients is non-zero. For example the binomials (2x + y) and (6x + 3y) are linearly dependent, since 3(2x + y) - (6x + 3y) = 0. |
linearly independent xattâné nâvâbasté Fr.: linéairement indépendant 1) A set of objects x1, x2, ..., xn
(→ vectors, → matrices,
→ polynomials, etc.) if it si not
→ linearly dependent. → linearly; → independent. |