An Etymological Dictionary of Astronomy and Astrophysics
English-French-Persian

فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

M. Heydari-Malayeri    -    Paris Observatory

   Homepage   
   


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Number of Results: 4 Search : ferromagnet
antiferromagnetism
  پاد‌آهن‌مغنات‌مندی   
pâd-âhanmeqnâtmandi

Fr.: antiferromagnétisme   

A property possessed by some → metals, → alloys, and salts of transition elements in which there is a lack of → magnetic moment due to the antiparallel or spiral arrangement of atomic → magnetic moments.

anti- + → ferromagnetism.

ferromagnet
  آهن‌مغنات   
âhanmeqnât

Fr.: ferro-aimant   

A ferroamagnetic substance, which possesses → ferromagnetism.

ferro-; → magnet.

ferromagnetic
  آهن‌مغناتی   
âhanmeqnâti

Fr.: ferromagnétique   

Relative to or characterized by → ferromagnetism.

ferro-; → magnetic.

ferromagnetism
  آهن‌مغنات‌مندی   
âhanmegnâtmandi

Fr.: ferromagnétisme   

A property of certain substances which are enormously more magnetic than any other known substance. Ferromagnetic substances, such as the chemical elements iron, nickel, cobalt, some of the rare earths, and ceratin alloys, achieve maximum → magnetization at relatively low magnetic field strengths. Their large → magnetic permeabilityies (greater than unity) vary with the strength of the applied field. When the temperature of a ferromagnet is increased the property vanishes gradually due to randomizing effects of thermal agitation. Beyond a definite temperature for each substance ( → Curie temperature) it ceases to behave as a ferromagnet and becomes a → paramagnet. Ferromagnetism is due to the alignment of the → magnetic moments of uncompensated electrons in the crystal lattice. Under the influence of an external magnetizing field, all of the uncompensated electrons line up with their → spins in the direction of the field. In contrast with paramagnetic substances, in which spins interact only with an external magnetic field, in ferromagnets the spins interact with each others, each of them trying to align the others in its own direction. This coupling gives rise to a spontaneous alignment of the moments over macroscopic regions called domains. The domains undergo further alignment when the substance is subjected to an applied field. Ferromagnets retain their magnetisation even when the external magnetic field has been removed. See also → antiferromagnetism ; → diamagnetism; → magnetism.

ferro-; → magnetism.