An Etymological Dictionary of Astronomy and Astrophysics
English-French-Persian

فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

M. Heydari-Malayeri    -    Paris Observatory

   Homepage   
   


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Number of Results: 10 Search : hydrodynamic
hydrodynamic
  هیدروتوانیک   
hirdrotavânik

Fr.: hydrodynamique   

Of or pertaining to → hydrodynamics.

hydro- + → dynamic.

hydrodynamic equation
  هموگش ِ هیدروتوانیک   
hamugeš-e hirdrotavânik

Fr.: équation hydrodynamique   

Fluid mechanics: A → partial differential equation which describes the motion of an element of fluid subjected to different forces such as pressure, gravity, and frictions.

hydrodynamic; → equation.

hydrodynamic equilibrium
  ترازمندی ِ هیدروتوانیک   
tarâzmandi-ye hirdrotavânik

Fr.: équilibre hydrodynamique   

The state of a star when all its internal forces are in equilibrium. The main forces are gas pressure, radiation pressure due to thermonuclear fusion that tends to disrupt the star, and the opposing gravity. → hydrostatic equilibrium.

hydrodynamic; → equilibrium.

hydrodynamics
  هیدروتوانیک   
hidrotavânik

Fr.: hydrodynamique   

The branch of physics dealing with the motion, energy, and pressure of neutral → fluids.

hydro- + → dynamics.

ideal magnetohydrodynamics (MHD)
  مغنات-و-هیدروتوانیک ِ آرمانی، ~ مینه‌وار   
meqnâtohidrotavânik-e ârmâni, ~ minevâr

Fr.: magnétohydrodynamique idéale   

Magnetohydrodynamics of a → plasma with very large (infinite) → conductivity. In this condition, → Ohm's law reduces to E = -v × B, where E represents → electric field, B → magnetic field, and v the → fluid velocity. Ideal MHD is the simplest model to describe the dynamics of plasmas immersed in a magnetic field. It is concerned with → one-fluid magnetohydrodynamics and neglects → resistivity. This theory treats the plasma composed of many charged particles with locally neutral charge as a continuous single → fluid. Ideal MHD does not provide information on the velocity distribution and neglects the physics relating to wave-particle interactions, as does the two-fluid theory as well. It does have the advantage that the macroscopic dynamics of the → magnetized plasma can be analyzed in realistic three-dimensional geometries (K. Nishikawa & M. Wakatani, 2000, Plasma Physics, Springer). See also → non-ideal magnetohydrodynamics.

ideal; → magnetohydrodynamics.

magnetohydrodynamic
  مغنات-و-هیدروتوانیک   
meqnâtohidrotavânik

Fr.: magnétohydrodynamique   

Of or relating to → magnetohydrodynamics.

magneto- + → hydrodynamic.

magnetohydrodynamics (MHD)
  مغنات-و-هیدروتوانیک   
meqnâtohidrotavânik

Fr.: magnétohydrodynamique   

The dynamics of an ionized plasma in the non-relativistic, collisional case. In this description, charge oscillations and high frequency electromagnetic waves are neglected. It is an important field of astrophysics since plasma is one of the commonest forms of matter in the Universe, occurring in stars, planetary magnetospheres, and interplanetary and interstellar space.

From → magneto- + → hydrodynamics.

non-ideal magnetohydrodynamics (MHD)
  مغنات-و-هیدروتوانیک ِ نا-آرمانی، ~ نا-مینه‌وار   
meqnâtohidrotavânik-e nâ-ârmâni, ~ nâ-minevâr

Fr.: magnétohydrodynamique non idéale   

A → magnetohydrodynamics approach dealing with → plasmas which is an improvement with respect to → ideal magnetohydrodynamics. Non-ideal magnetohydrodynamics allows for a drift between particles, redistributing the → magnetic flux and acting on both the → angular momentum and magnetic flux conservation issues.

non-ideal; → magnetohydrodynamics.

one-fluid magnetohydrodynamics
  مغنات-و-هیدروتوانیک ِ تک-شاره   
meqnâtohidrotavânik-e tak-šâre

Fr.: magnétohydrodynamique à une fluide   

A → magnetohydrodynamics treatment in which the → plasma consists only of one particle species and moves with the bulk speed. The thermal motion of the particles is neglected and thus there is no motion of particles relative to each other.

one; → fluid; → magnetohydrodynamics.

Smoothed Particle Hydrodynamics (SPH)
  هیدروتوانیک ِ ذره‌های ِ همواریده   
hidrotavânik-e zarrehâ-ye hamvâridé

Fr.: hydrodynamique des particules lissées   

A numerical method for modeling → compressible hydrodynamic flows, which uses particles to simulate a continuous fluid flow. Because the system of hydrodynamical basic equations can be analytically solved only for few exceptional cases, the SPH method provides a numerical algorithm to solve systems of coupled → partial differential equations for continuous field quantities. The main advantage of the method is that it does not require a computational grid to calculate spatial → derivatives and that it is a Lagrangian method, which automatically focuses attention on fluid elements. The equations of motion and continuity are expressed in terms of ordinary differential equations where the body forces become classical forces between particles. This method was first independently developed by Lucy (1977, AJ 82, 1013) and Gingold & Monaghan (1977, MNRAS 181, 375).

Smoothed Particle Hydrodynamics, first used by Gingold & Monaghan (1977); → smooth; → particle; → hydrodynamics.