An Etymological Dictionary of Astronomy and Astrophysics
English-French-Persian

فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

M. Heydari-Malayeri    -    Paris Observatory

   Homepage   
   


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Number of Results: 4 Search : legend
legend
  چیروک   
cirok

Fr.: légende   

1) A non-historical or unverifiable story handed down by tradition from earlier times and popularly accepted as historical.
2) The body of stories of this kind, especially as they relate to a particular people, group, or clan (Dictionary.com).

M.E. legende "written account of a saint's life," from O.Fr. legende and directly from M.L. legenda literally, "(things) to be read," noun use of feminine of L. legendus, gerund of legere "to read" (on certain days in church).

Cirok, from Kurd. cirok "story, fable," related to Kurd. cir-, cirin "to sing, [to recite?];" Av. kar- "to celebrate, praise;" Proto-Ir. *karH- "to praise, celebrate;" cf. Skt. kar- "to celebrate, praise;" O.Norse herma "report;" O.Prussian kirdit "to hear;" PIE *kerH2- "to celebrate" (Cheung 2007).

legendary
  چیروکی   
ciroki

Fr.: légendaire   

Of, relating to, or of the nature of a legend.

legend; → -ary.

Legendre equation
  هموگش ِ لوژاندر   
hamugeš-e Legendre

Fr.: équation de Legendre   

The → differential equation of the form: d/dx(1 - x2)dy/dx) + n(n + 1)y = 0. The general solution of the Legendre equation is given by y = c1Pn(x) + c2Qn(x), where Pn(x) are Legendre polynomials and Qn(x) are called Legendre functions of the second kind.

Named after Adrien-Marie Legendre (1752-1833), a French mathematician who made important contributions to statistics, number theory, abstract algebra, and mathematical analysis; → equation.

Legendre transformation
  ترادیسش ِ لوژاندر   
tarâdiseš-e Legendre

Fr.: transformation de Legendre   

A mathematical operation that transforms one function into another. Two differentiable functions f and g are said to be Legendre transforms of each other if their first derivatives are inverse functions of each other: df(x)/dx = (dg(x)/dx)-1. The functions f and g are said to be related by a Legendre transformation.

Legendre equation; → transformation.