Coulomb energy kâruž-e Coulomb Fr.: énergie coulombienne The → potential energy from which derives the repulsive electrostatic force between two → charged particles. For example, the Coulomb energy between two protons is e2/r ~ 0.5 MeV, which is small compared with the average → binding energy per particle (~ 8 Mev). However the Coulomb repulsion becomes important for heavy nuclei. The total Coulomb energy of a nucleus is given by: (3/5) Z(Z - 1)e2/R, where Z is the → atomic number, e the charge, and R the nuclear radius. Since R ∝ A1/3 and Z is roughly proportional to A, the Coulomb energy is roughly proportional to A5/3. On the other hand, the total binding energy is proportional to A, which means that the relative importance of the repulsive electrostatic energy increases with increasing mass number as A2/3. |