Euclidean Oqlidosi (#) Fr.: euclidien Of or pertaining to Euclid, or his postulates. → Euclidean division, → Euclidean geometry, → Euclidean space, → non-Euclidean geometry. After the Gk. geometrician and educator at Alexandria, around 300 B.C., who applied the deductive principles of logic to geometry, thereby deriving statements from clearly defined axioms. |
Euclidean division baxš-e Oqlidosi Fr.: division euclidienne In arithmetic, the conventional process of division of two → integers. For a → real number a divided by b > 0, there exists a unique integer q and a real number r, 0 ≤ r <b, such that a = qb + r. |
Euclidean geometry hendese-ye Oqlidosi (#) Fr.: géométrie euclidienne The geometry based on the postulates or descriptions of Euclid. One of the critical assumptions of the Euclidean geometry is given in his fifth postulate: through a point not on a line, one and only one line be drawn parallel to the given line. See also → non-Euclidean geometry. |
Euclidean space fazâ-ye Oqlidosi Fr.: espace euclidean A space in which the → distance between any two points is given by the → Pythagorean theorem: d2 = (Δx)2 + (Δy)2 + (Δz)2, where d is distance and Δx, Δy, and Δz are differential → Cartesian coordinates. Euclidean n-space Rn is the set of all column vectors with n real entries. |
non-Euclidean geometry hendese-ye nâ-oqlidosi (#) Fr.: géométrie non-euclidienne Any of several geometries which do not follow the postulates and results of Euclidean geometry. For example, in a non-Euclidean geometry through a point several lines can be drawn parallel to another line. Or, the sum of the interior angles of a triangle differs from 180 degrees. According to Einstein's general relativity theory, gravity distorts space into a non-Euclidean geometry. → non-; → Euclidean geometry. |
pseudo-Euclidean space fazâ-ye doruž-Oqlidosi Fr.: espace pseudo-euclidien A real vector space of dimension n having a symmetric bilinear form (x, y) such that in some basis e1, ..., en, the quadratic form (x2) takes the form x12 + ... + xn - 12 - xn2. Such bases are called orthonormal. |