An Etymological Dictionary of Astronomy and Astrophysics
English-French-Persian

فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

M. Heydari-Malayeri    -    Paris Observatory

   Homepage   
   


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Number of Results: 7 Search : Galilean
Galilean
  گالیله‌ای   
Gâlile-yi (#)

Fr.: galiléen, galiléenne   

Of or pertaining to Galileo Galilei (1564-1642), Italian physicist and astronomer.

Galilean invariance
  ناورتایی ِ گالیله‌ای   
nâvartâyi-ye Gâlile-yi

Fr.: invariance galiléenne   

Same as → Galilean relativity.

Galilean; → invariance.

Galilean Moons
  مانگ‌های ِ گالیله‌ای   
mânghâ-ye Gâlile-yi (#)

Fr.: lunes galiléennes   

Same as → Galilean satellites.

Galilean; → moon.

Galilean reference frame
  چارچوب ِ بازبرد ِ گالیله‌ای   
cârcub-e bâzbord-e Gâlile-yi

Fr.: référentiel galiléen   

Same as → inertial reference frame.

Galilean; → reference; → frame.

Galilean relativity
  بازانیگی ِ گالیله‌ای   
bâzânigi-ye Gâlile-yi

Fr.: relativité galiléenne   

The principle according to which the fundamental laws of physics are the same in all frames of reference moving with constant velocity with respect to one another (→ inertial reference frames). Same as → Galilean invariance and → Newtonian relativity.
See also: → Galilean transformation, → Einsteinian relativity.

Galilean; → relativity.

Galilean satellites
  بنده‌وارها‌ی ِ گالیله‌ای   
bandevârhâ-ye Gâlile-yi

Fr.: satellites galiléens   

The four largest and brightest satellites of → Jupiter, that is: → Io (Jupiter I), → Europa, → Ganymede, and → Callisto.

Galileo, who had discovered them, called them Sidera Medicæa "Medicean Stars" in honor of the Medici family. → Galilean Moons; → satellite.

Galilean transformation
  ترادیس ِ گالیله‌ای   
tarâdis-e Gâlile-yi (#)

Fr.: transformation galiléenne   

The method of relating a measurement in one → reference frame to another moving with a constant velocity with respect to the first within the → Newtonian mechanics. The Galilean transformation between the coordinate systems (x,y,z,t) and (x',y',z',t') is expressed by the relations: x' = x - vt, y' = y, z' = z. Galilean transformations break down at high velocities and for electromagnetic phenomena and is superseded by the → Lorentz transformations.

Galilean; → transformation.