An Etymological Dictionary of Astronomy and Astrophysics
English-French-Persian

فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

M. Heydari-Malayeri    -    Paris Observatory

   Homepage   
   


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Number of Results: 1 Search : Hamiltonian function
Hamiltonian function
  کریای ِ هامیلتون   
karyâ-ye Hâmilton

Fr.: fonction de Hamilton   

A function that describes the motion of a → dynamical system in terms of the → Lagrangian function, → generalized coordinates, → generalized momenta, and time. For a → holonomic system having n degrees of freedom, the Hamiltonian function is of the form: H = Σpiq.i - L(qi,q.i,t) (summed from i = 1 to n), where L is the Lagrangian function. If L does not depend explicitly on time, the system is said to be → conservative and H is the total energy of the system. The Hamiltonian function plays a major role in the study of mechanical systems. Also called → Hamiltonian.

Introduced in 1835 by the Irish mathematician and physicist William Rowan Hamilton (1805-1865); → function.