An Etymological Dictionary of Astronomy and Astrophysics
English-French-Persian

فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

M. Heydari-Malayeri    -    Paris Observatory

   Homepage   
   


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Number of Results: 1 Search : Legendre equation
Legendre equation
  هموگش ِ لوژاندر   
hamugeš-e Legendre

Fr.: équation de Legendre   

The → differential equation of the form: d/dx(1 - x2)dy/dx) + n(n + 1)y = 0. The general solution of the Legendre equation is given by y = c1Pn(x) + c2Qn(x), where Pn(x) are Legendre polynomials and Qn(x) are called Legendre functions of the second kind.

Named after Adrien-Marie Legendre (1752-1833), a French mathematician who made important contributions to statistics, number theory, abstract algebra, and mathematical analysis; → equation.