Rosseland mean opacity kederi-ye miyângin-e Rosseland Fr.: opacité moyenne de Rosseland The → opacity of a gas of given composition, temperature, and density averaged over the various wavelengths of the radiation being absorbed and scattered. The radiation is assumed to be in → thermal equilibrium with the gas, and hence have a → blackbody spectrum. Since → monochromatic opacity in stellar plasma has a complex frequency dependence, the Rosseland mean opacity facilitates the analysis. Denoted κR, it is defined by: 1/κR = (π/4σT3) ∫(1/kν) (∂B/∂T)νdν, summed from 0 to ∞, where σ is the → Stefan-Boltzmann constant, T temperature, B(T,ν) the → Planck function, and kν monochromatic opacity (See Rogers, F.J., Iglesias, C. A. Radiative atomic Rosseland mean opacity tables, 1992, ApJS 79, 507). Named after Svein Rosseland (1894-1985), a Norwegian astrophysicist, who obtained the expression in 1924; → mean; → opacity. |