Zeeman effect oskar-e Zeeman Fr.: effet Zeeman The splitting of spectral lines into closely-spaced components when the radiating substance is placed in a strong → magnetic field. Distinction is made between the normal and → anomalous Zeeman effects, and also the longitudinal and transverse Zeeman effects. In the normal → longitudinal Zeeman effect each spectral line is split into two components with frequencies ν ± Δν. In the normal → transverse Zeeman effect un un-displaced line is observed along with a doublet, i.e. three lines in all, with the frequencies ν and ν ±Δν. In the classical theory of the normal Zeeman effect, the motion of an electron in an atom is regarded as the harmonic oscillation of a linear harmonic oscillator. Arbitrary linearly polarized oscillation of the electron can be resolved into two oscillations: one along the magnetic field and the other in a plane perpendicular to this field. The latter can be further resolved into two oscillations, circularly polarized with opposite directions of rotation that occur in the Larmor precession frequency. Classical theory cannot explain the anomalous Zeeman effect. Both effects are accounted for in quantum mechanics as the result of changes in the energy levels of atomic electrons due to the interaction of their → orbital angular momentum and → spin angular momentum with each other and with the external magnetic field. See also → inverse Zeeman effect. Named after Pieter Zeeman (1865-1943), Dutch physicist who discovered the phenomenon; → effect. |