first collapse rombeš-e naxost Fr.: premier effondrement An early phase in the process of star formation which begins when the mass of a → molecular cloud → clump exceeds the → Jeans mass. The collapse is initially → optically thin to the thermal emission from → dust grains, and the compressional heating rate is much smaller than the cooling rate by the → thermal radiation. The collapse proceeds → isothermally. The isothermal condition is broken when the central density reaches about 10-13 g cm-3 and a small region at the center of the cloud starts to become → opaque. The heat generated by the collapse in this region is no longer freely radiated away, and the compression becomes approximately → adiabatic. The central temperature and pressure then begin to rise rapidly, soon becoming sufficient to decelerate and stop the collapse at the center. There then arises a small central core, called the → first core, in which the material has stopped collapsing and is approaching → hydrostatic equilibrium. Outside this core, the material is still nearly isothermal and continues to fall inward almost in → free fall. Consequently a shock front arises at the boundary of the core, where the infalling material is suddenly stopped. The initial mass and radius of the core are about 1031 g and 6 x 1013 cm, respectively, and the central density and temperature are about 2 x 10-10 g cm-3 and 170 K, respectively. As the collapse proceeds, the core grows in mass due to the infall of the surrounding material; at the same time, however, the core radius decreases because of radiative energy losses from the outer layers of the core. The process leads to the → second collapse (R. B. Larson, 1969, MNRAS 145, 271). |