free expansion phase fâz-e sopâneš-e âzâd Fr.: phase d'expansion libre The first phase of → supernova remnant (SNR) evolution in which the surrounding → interstellar medium (ISM) has no influence on the expansion of the → shock wave, and the pressure of the interstellar gas is negligible. The shock wave created by the → supernova explosion moves outward into the interstellar gas at highly → supersonic speed. Assuming that most of the → supernova energy ESN is transformed into → kinetic energy of the ejected gas, the ejection velocity ve can be estimated from ESN by using ESN = (1/2) Meve2, which leads to ve = (2ESN / Me)(1/2), where Me is the ejected mass. The schematic structure of the SNR at this phase can be described as follows: behind the strong → shock front which moves outward into the ISM, compressed interstellar gas accumulates forming a → shell of interstellar gas. This shell of swept-up material in front of shock does not represent a significant increase in the mass of the system. After some time the accumulated mass equals the ejected mass of stellar material, and it will start to affect the expansion of the SNR. By definition, this is the end of the free expansion phase, and the corresponding radius of the SNR, called → sweep-up radius, RSW, is defined by Me = (4π/3) RSW3ρ0, that is RSW = (3Me / 4πρ0)(1/3), where ρ0 is the initial density of the ISM. This radius is reached at the sweep-up time tSW = RSW/ve. The free expansion phase lasts some 100-200 years until the mass of the material swept up by the shock wave exceeds the mass of the ejected material. Then the following → snowplow phase starts. |