dynamical friction mâleš-e tavânik Fr.: frottement dynamique The gravitational interaction between a relatively massive body and a field of much less massive bodies through which the massive body travels. As a result, the moving body loses → momentum and → kinetic energy. An example of dynamical friction is the sinking of massive stars to the center of a → star cluster, a process called → mass segregation. Dynamical friction plays an important role in → stellar dynamics. It was first quantified by Chandrasekhar (1943). |
friction mâleš (#) Fr.: frottement The resisting force offered by one body to the relative motion of another body in contact with the first. From L. frictionem "a rubbing, rubbing down," from fricare "to rub." Mâleš, verbal noun of mâlidan "to rub," from, variants parmâs "contact, touching," marz "frontier, border, boundary," Mid.Pers. mâlitan, muštan "to rub, sweep;" Av. marəz- "to rub, wipe," marəza- "border, district;" PIE base *merg- "boundary, border;" cf. L. margo "edge" (Fr. marge "margin"); P.Gmc. *marko; Ger. Mark; E. mark, margin. |
Stokes friction factor karvand-e mâleš-e Stokes Fr.: facteur de friction de Stokes For the translational motion of a spherical body moving in a → viscous fluid, the proportionality factor between the uniform flow velocity far from the sphere and the drag force, provided no-slip boundary condition and small → Reynolds numbers: f = 6πηR, where η is the Reynolds number and R radius of the sphere. |
tidal friction mâleš-e kešandi Fr.: friction de marées The → friction exerted on a → primary body (Earth) because of the → phase lag between the → tides and the → gravitational attraction of the → secondary body (Moon). The Earth's → rotation is faster than the Moon's orbital motion; therefore the Earth's → tidal bulges lead the Moon on its orbit. This has two important effects: The Earth is being pulled slightly "back" from its sense of rotation. So the Earth's rotation slows (by about 1 second every 50,000 years). Moreover, the Moon is being pulled slightly "forward" on its orbit. So it is harder for the Earth to hold it in place, and it moves further away from the Earth (by about 3-4 cm per yr). Tidal friction tends to synchronize the rotation period of a close-in companion with the period of its orbital motion around the primary. → tidal coupling. |