ideal magnetohydrodynamics (MHD) meqnâtohidrotavânik-e ârmâni, ~ minevâr Fr.: magnétohydrodynamique idéale Magnetohydrodynamics of a → plasma with very large (infinite) → conductivity. In this condition, → Ohm's law reduces to E = -v × B, where E represents → electric field, B → magnetic field, and v the → fluid velocity. Ideal MHD is the simplest model to describe the dynamics of plasmas immersed in a magnetic field. It is concerned with → one-fluid magnetohydrodynamics and neglects → resistivity. This theory treats the plasma composed of many charged particles with locally neutral charge as a continuous single → fluid. Ideal MHD does not provide information on the velocity distribution and neglects the physics relating to wave-particle interactions, as does the two-fluid theory as well. It does have the advantage that the macroscopic dynamics of the → magnetized plasma can be analyzed in realistic three-dimensional geometries (K. Nishikawa & M. Wakatani, 2000, Plasma Physics, Springer). See also → non-ideal magnetohydrodynamics. → ideal; → magnetohydrodynamics. |
non-ideal magnetohydrodynamics (MHD) meqnâtohidrotavânik-e nâ-ârmâni, ~ nâ-minevâr Fr.: magnétohydrodynamique non idéale A → magnetohydrodynamics approach dealing with → plasmas which is an improvement with respect to → ideal magnetohydrodynamics. Non-ideal magnetohydrodynamics allows for a drift between particles, redistributing the → magnetic flux and acting on both the → angular momentum and magnetic flux conservation issues. → non-→ ideal; → magnetohydrodynamics. |