magnetocentrifugal model model-e meqnât-markazgoriz Fr.: modèle magnétocentrifuge A → magnetohydrodynamic model devised to account for the → bipolar jets and → outflows observed around → protostars. Basically, a → poloidal magnetic field is frozen into a rotating → accretion disk. If the angle between the magnetic field lines threading the disk and the rotation axis of the disk is larger than 30°, the plasma can be accelerated out of the accretion disk along the field lines. The field lines rotate at a constant → angular velocity, and as the gas moves outward along the field lines, it is accelerated by an increasing → centrifugal force (magnetocentrifugal acceleration). At some point, when the rotation velocity is about the same as the → Alfven velocity in the gas, the field lines get increasingly wound up by the inertia of the attached gas and a strong → toroidal magnetic field component is generated. The toroidal component is the main agent in collimating the flow into a direction along the → open magnetic field lines. The earliest version of the model was proposed by Blandford & Payne (1982, MNRAS 199, 883). It has two main versions: → X-wind and → disk wind models. See also → magnetorotational instability. → magneto-; → centrifugal; → model. |