<< < "no abe acc act aff ama ani ant aps ast atm aut bar bic Boh bou cal car cel che cla col com com Com con con con con con con con con con con con con Cor cor cot cul de- dec dem des dif dil dir dis dom dyn Edd ele ele emi equ Eve exc exp fac fin for fre fuz gen Glo gra gra Ham hel hor hyd ign inc inf Inf int Int int ion irr jum Lag lea lig lin Lor Lyo mag mat met min Mon moo NaC neg New New non non non nul obs one opt Ori oxi par per per phl pho pla Pla pol pos pre pro pro pse qua rad rad rea rec reg rel res ret rot Ryd sci sec sec sep sim Soc son spe sta Ste Sto sub sup syn the Tho top tra Tro unc vec vio Was Wil Zhe > >>
Stefan-Boltzmann constant pâyâ-ye Stefan-Boltzmann Fr.: constante de Stefan-Boltzmann The constant of proportionality present in the → Stefan-Boltzmann law. It is equal to σ = 5.670 × 10-8 W m-2 K-4 or 5.670 × 10-5 erg cm-2 s-1 K-4. → Stefan-Boltzmann law; → constant. |
stellar aberration birâheš-e setâre-yi Fr.: aberration stellaire Same as → aberration of starlight . |
stellar association âhazeš-e setâre-yi Fr.: association stellaire 1) A large, loose grouping of 10 to 1000 stars that are of similar spectral type and
share a common origin. The members move together
through space, but have become gravitationally → unbound.
Stellar associations are primarily identified by their common
movement vectors and ages.
→ OB association;
→ T association;
→ R association. The concept of stellar association was first introduced by Viktor A. Ambartsumian (1908-1996), Armenian astrophysicist (1947, Stellar Evolution and Astrophysics, Armenian Acad. of Sci.; German translation, Abhandl. Sowjetischen Astron. Ser. 1. 33, 1951). → stellar; → association. |
stellar astronomy axtaršenâsi-ye setâreyi (#) Fr.: astronomie stellaire The branch of astronomy that deals with the study of stars, their physical properties, formation, and evolution. Same as → stellar astrophysics and → stellar physics. |
stellar creation function karyâ-ye âfarineš-e setâregân Fr.: fonction de création stellaire The number of stars born per unit area in the mass range log M to log M + d log M during the time interval t to t + dt. The integration of the creation function over time gives the → present-day mass function (Miller & Scalo, 1797, ApJSS 41, 513). |
stellar evolution fargašt-e setâré Fr.: évolution stellaire The gradual changes in physical state (spectrum, luminosity, temperature) and chemical composition that occurs during the life of a star. |
stellar population porineš-e setâre-yi Fr.: population stellaire → Population I star; → Population II star. → stellar; → population. |
stellar population synthesis handâyeš-e porinešhâ-ye setâre-yi Fr.: synthèse de poupulations stellaires A theoretical model that reconstructs the integrated spectrum of → stellar populations from an empirical library of stellar spectra containing the range of types expected to be present in the sample. The light received from a given galaxy is emitted by a large number of stars that may have different masses, ages, and metallicities. Stellar population synthesis models are tools for interpreting the integrated light that we observe from the galaxies. → stellar; → population; → model. |
stellar pulsation tapeš-e setâré, ~ setâre-yi Fr.: pulsation stellaire The expansion of a star followed by contraction so that its → surface temperature and → luminosity undergo periodic variation. Pulsation starts with a loss of → hydrostatic equilibrium, when, for example, a layer contracts. This layer heats up and becomes more opaque to radiation. Therefore, radiative diffusion slows down through the layer because of its increased → opacity and heat increases beneath it. Hence pressure rises below the layer. Eventually this increase in pressure starts to push the layer out. The layer expands, cools and becomes more transparent to radiation. Energy now escapes from below the layer and the pressure beneath the layer drops. The layer falls inward and the cycle starts over. See also → kappa mechanism; → gamma mechanism; → partial ionization zone; → pulsating star; → valve mechanism. |
stellar rotation carxeš-e setâré, é setêre-yi Fr.: rotation stellaire The spinning of a star about its axis, due to its angular momentum. Stars do not necessarily rotate as solid bodies, and their angular momentum may be distributed non-uniformly, depending on radius or latitude.Thus the equator of the star can rotate at a different angular velocity than the higher latitudes. These differences in the rate of rotation within a star may have a significant role in the generation of a stellar magnetic field. |
stellar structure equation hamugeš-e sâxtâr-e setâré Fr.: équation de structure stellaire A set of → differential equations describing the physical properties of stars based on two main assumptions: a star is a perfect sphere and the net force on a macroscopic mass element is zero. If the effects of rotation and magnetism are ignored, these assumptions lead to a set of five differential equations. |
step function karyâ-ye pelle-yi Fr.: fonction échelon Math.: A function f of a real variable defined on an interval [a,b] so that [a,b] can be divided into a finite number of sub-intervals on each of which f is a constant. The graph of a step function is a series of line segments resembling a set of steps. Step, from M.E. steppen, O.E. steppan; cf. Du. stap, O.H.G. stapfo, Ger. stapfe "footprint;" → function. Karyâ, → function; pellé "stair, step;" Mid.Pers. pylg "step," pillagân "steps, staircase;" from *palak, from *padak, from pad-, → foot, + relation suffix -ak. |
stereographic projection farâšâneš-e estereyonegârik Fr.: projection stéréographique A graphical method of depicting three-dimensional geometrical objects in two dimensions. In a → planispheric astrolabe, it is the projection of a point of the celestial sphere onto the equatorial plane, as seen from one of the poles. The center of projection is the South pole for the northern hemisphere, and the North pole for the southern hemisphere. In this operation the projection of any circle of the sphere remains a circle on the projection plane and moreover the projection does not alter angles. → stereographic; → projection |
stimulated emission gosil-e gavâzidé Fr.: émission stimulée The process by which an electron, which is already in an excited state (an upper energy level, in contrast to its lowest possible level or "ground state"), can "stimulate" a transition to a lower level, producing a second photon of the same energy. The quantum energy of the incoming photon should be equal to the energy difference between its present level and the lower level. This process forms the basis of both the → laser and → maser. Same as → induced emission. |
stimulated star formation diseš-e gavâlide-ye setâré Fr.: formation stimulée d'étoiles A process in which a star is not formed spontaneously but is provoked by the action of external forces, such as pressure and shock on a molecular cloud by close-by → massive stars, → supernova explosions, etc. See also → sequential star formation. Stimulated, p.p. of → stimulate; → star formation. |
Stirling's approximation nazdineš-e Stirling Fr.: approximation de Stirling A mathematical formula yielding an approximate value for → factorial n, when n is large: n! ≅ (2πn)1/2nne-n, where e is the base of → natural logarithm. Named after James Stirling (1692-1770), a Scottish mathematician; → approximation. |
stochastic excitation barangizeš-e kâturgin Fr.: excitation stochastique The mechanism arising from turbulent convection in the → convective zone of stars, which is responsible for the driving of stellar → pulsation modes. In stars cooler than typically ~ 7 500 K (→ F-type stars and cooler), the stochastic excitation occurs in the convection envelope. In massive stars, it may develop either in the → convective core or in the convective layer beneath the → photosphere. Recent studies suggest that in → Be stars stochastic excitation takes place in the convective core. The stochastic waves can transport → angular momentum from the core to the surface. Fast rotation, as in Be stars, amplifies the stochastic excitation. → stochastic; → mode. |
stochastic self-propagating star formation diseš-e setâregân bâ xod-tuceš-e kâturgin Fr.: formation d'étoiles par auto-propagation stochastique A mechanism that could be responsible for global → spiral structure in galaxies either by itself or in conjunction with spiral → density waves. In this mechanism, star formation is caused by → supernova-induced → shocks which compress the → interstellar medium. The → massive stars thus formed may, when they explode, induce further → star formation. If conditions are right, the process becomes self-propagating, resulting in agglomerations of young stars and hot gas which are stretched into spiral shaped features by → differential rotation. Merging of small agglomerations into larger ones may then produce large-scale spiral structure over the entire galaxy. The SSPSF model, first suggested by Mueller & Arnett (1976) was developed by Gerola & Seiden (1978). While the → density wave theory postulates that spiral structure is due to a global property of the galaxy, the SSPSF model examines the alternative viewpoint, namely that spiral structure may be induced by more local processes. The two mechanisms are not necessarily mutually exclusive, but they involve very different approaches to the modeling of galaxy evolution. The SSPSF gives a better fit than the density wave theory to the patchy spiral arms found in many spiral galaxies. However, it cannot explain → galactic bars. → stochastic; → self; → propagate; → star; → formation. |
Stokes friction factor karvand-e mâleš-e Stokes Fr.: facteur de friction de Stokes For the translational motion of a spherical body moving in a → viscous fluid, the proportionality factor between the uniform flow velocity far from the sphere and the drag force, provided no-slip boundary condition and small → Reynolds numbers: f = 6πηR, where η is the Reynolds number and R radius of the sphere. |
stone sang (#) Fr.: pierre The hard nonmetallic mineral or group of consolidated minerals either in mass or in a fragment of pebble or larger size. See also → rock. O.E. stan; cf. O.N. steinn, Dan. steen, O.H.G., Ger. Stein; from PIE *stai- "stone," also "to thicken, stiffen" (cf. Skt. styayate "curdles, becomes hard;" Av. stay- "heap;" Gk. stear "fat, tallow," stia, stion "pebble"). Sang "stone, rock;" Mid.Pers. sang; O.Pers. aθanga-; Av. asenga- "stone;" PIE *aken-. |
<< < "no abe acc act aff ama ani ant aps ast atm aut bar bic Boh bou cal car cel che cla col com com Com con con con con con con con con con con con con Cor cor cot cul de- dec dem des dif dil dir dis dom dyn Edd ele ele emi equ Eve exc exp fac fin for fre fuz gen Glo gra gra Ham hel hor hyd ign inc inf Inf int Int int ion irr jum Lag lea lig lin Lor Lyo mag mat met min Mon moo NaC neg New New non non non nul obs one opt Ori oxi par per per phl pho pla Pla pol pos pre pro pro pse qua rad rad rea rec reg rel res ret rot Ryd sci sec sec sep sim Soc son spe sta Ste Sto sub sup syn the Tho top tra Tro unc vec vio Was Wil Zhe > >>