<< < "no abe acc act aff ama ani ant aps ast atm aut bar bic Boh bou cal car cel che cla col com com Com con con con con con con con con con con con con Cor cor cot cul de- dec dem des dif dil dir dis dom dyn Edd ele ele emi equ Eve exc exp fac fin for fre fuz gen Glo gra gra Ham hel hor hyd ign inc inf Inf int Int int ion irr jum Lag lea lig lin Lor Lyo mag mat met min Mon moo NaC neg New New non non non nul obs one opt Ori oxi par per per phl pho pla Pla pol pos pre pro pro pse qua rad rad rea rec reg rel res ret rot Ryd sci sec sec sep sim Soc son spe sta Ste Sto sub sup syn the Tho top tra Tro unc vec vio Was Wil Zhe > >>
non-hierarchical multiple system râžmân-e bastâyi-ye nâpâygâni Fr.: système multiple non hiérarchique A → multiple star system that lacks the characteristics of a → hierarchical multiple system. → non-; → hierarchical; → multiple; → system. |
non-ideal magnetohydrodynamics (MHD) meqnâtohidrotavânik-e nâ-ârmâni, ~ nâ-minevâr Fr.: magnétohydrodynamique non idéale A → magnetohydrodynamics approach dealing with → plasmas which is an improvement with respect to → ideal magnetohydrodynamics. Non-ideal magnetohydrodynamics allows for a drift between particles, redistributing the → magnetic flux and acting on both the → angular momentum and magnetic flux conservation issues. → non-→ ideal; → magnetohydrodynamics. |
non-inertial frame cârcub-e nâlaxtinâk, ~ nâlaxtimand Fr.: référentiel non inertiel, ~ non galiléen Any frame of reference in which the law of inertia does not apply, such as in accelerating and rotating frames. For example, the Earth is a non-inertial frame because it is rotating about its axis. But the rotation is so slow that the associated acceleration is negligible compared to other accelerations commonly encountered in everyday life. However, the non-inertial nature of the Earth appears in, e.g., the → Coriolis effect. → inertial reference frame. |
non-ionized nâyonidé (#) Fr.: non ionisé Not ionized, → neutral. |
non-local thermodynamic equilibrium (NLTE) tarâzmandi-ye garmâtavânik-e nâmahali Fr.: hors équilibre thermodynamique local A physical condition in which the assumption of the → local thermodynamic equilibrium does not hold. |
non-luminous matter mâdde-ye nâtâbân Fr.: matière non lumineuse Not ordinary matter. Same as → dark matter. |
non-principal axis (NPA) rotational motion jonbeš-e carxeši be gerd-e âse-ye nâ-farin Fr.: mouvement rotationnel autour de l'axe non-parincipal A → tumbling motion of an → asteroid. See also → tumbling asteroid. → non-; → principal axis; → rotational; → motion. |
non-radial pulsation tapeš-e nâšo'âyi Fr.: pulsation non-radiale A type of stellar pulsation in which waves run in different directions on and beneath the surface of a star. |
non-radiative process farâravand-e nâtâbeši Fr.: processus non radiatif An process in which an excited state returns to the ground state without emitting radiation. → radiative process. |
non-relativistic nâ-bâzânigi-mand Fr.: non-relativiste Not concerned with or based on the → theory of relativity.
See also: → non-; → relativistic. |
non-relativistic electron elektron-e nâ-bâzânigi-mand Fr.: électron non-relativiste An electron that does not experience relativistic effects since its velocity is very small compared to that of light. → non-relativistic; → electron. |
non-relativistic mechanics mekânik-e nâ-bâzânigi-mand Fr.: mécanique non-relativiste Mechanics in which the masses under consideration move at speeds much slower than the speed of light. → non-relativistic; → mechanics. |
non-thermal nâgarmâyi Fr.: non thermique The nature of a → non-thermal radiation. |
non-thermal emission gosil- nâgarmâyi (#) Fr.: émission non thermique → non-thermal; → emission. |
non-thermal filament (NTF) rešte-ye nâgarmâyi Fr.: filament non thermique Any of many long and slender structures visible in → radio continuum images of the inner hundred parsecs of the → Galactic Center. NTFs are typically tens of parsecs long and only a fraction of parsec wide. They may occur in isolation or in bundles, such as those comprising the linear portion of the prominent → radio Arc. Their → non-thermal spectrum and strong → linear polarization indicate → synchrotron radiation. The magnetic fields in the NTFs have been estimated from various means. Early estimates centered on the radio Arc, and focused on a comparison between the → magnetic pressure and the estimated → ram pressure from nearby → molecular cloud interactions, indicated magnetic field strengths as high as 1 mG (Morris and Yusef-Zadeh 1985). More recent observations, however, have pointed to significantly weaker magnetic fields among the population of NTFs. Synchrotron models of the radio spectrum imply equipartition magnetic fields between 50-200 μG. Theoretically, it has been challenging to understand the nature of these filaments that resemble extragalactic → radio jets but are not accompanied with any obvious source of acceleration of charged particles to high energy → relativistic energies. Although a number of detailed models have been considered, there is no consensus as to the origin of the NTFs. These models suggest that molecular and ionized gas clouds, mass-losing stars, → Galactic winds, magnetic activity of the → supermassive black hole at the Galactic center, and → lepton production due to → dark matter annihilation play a role in the processes that lead to the production of the NTFs (Linden et al. 2011, ApJ 741,95, and references therein). In most models, the magnetic field is strong and its global geometry in the central region of the Galaxy is considered to be → poloidal and static. However, some recent models have argued that the magnetic field is local and dynamic. → non-thermal; → filament. |
non-thermal radiation tâbeš-e nâgarmâyi (#) Fr.: rayonnement non thermique The electromagnetic radiation whose characteristics do not depend on the temperature of the emitting source. In contrast to → thermal radiation, it has a different spectrum from that of → blackbody radiation. The three common types of non-thermal radiation in astronomy are: → synchrotron radiation, → bremsstrahlung radiation, and → maser → stimulated emission. → non-thermal; → radiation. |
non-thermal spectrum binâb-e nâgarmâyi Fr.: spectre non thermique A radio emission with a negative → spectral index. In this type of emission the intensity of the emitted radiation increases with wavelength. → non-thermal; → spectrum. |
non-zero nâ-sefr Fr.: non zéro, non nul Not equal to zero. |
non-zero polynomial bolnâmin-e nâ-sefr Fr.: polynôme non nul A → polynomial that at least has one non-zero → coefficient. See also → zero polynomial. → non-zero; → polynomial. |
noncoherent scattering parâkaneš-e nâhamdus Fr.: diffusion incohérente The absorption of a photon and its re-emission at a different frequency (in the observer's frame of reference) by scattering atoms. → non-; → coherent scattering. |
<< < "no abe acc act aff ama ani ant aps ast atm aut bar bic Boh bou cal car cel che cla col com com Com con con con con con con con con con con con con Cor cor cot cul de- dec dem des dif dil dir dis dom dyn Edd ele ele emi equ Eve exc exp fac fin for fre fuz gen Glo gra gra Ham hel hor hyd ign inc inf Inf int Int int ion irr jum Lag lea lig lin Lor Lyo mag mat met min Mon moo NaC neg New New non non non nul obs one opt Ori oxi par per per phl pho pla Pla pol pos pre pro pro pse qua rad rad rea rec reg rel res ret rot Ryd sci sec sec sep sim Soc son spe sta Ste Sto sub sup syn the Tho top tra Tro unc vec vio Was Wil Zhe > >>