<< < -ne nan nat nav nec Nep neu New New NGC nob nom non non nor nor nuc nuc nul nut > >>
neutral tail dom-e natâr, donbâle-ye ~ Fr.: queue neutre Same as → sodium tail. |
neutral wave mowj-e natâr Fr.: onde neutre Same as → neutral mode. |
neutralino notrâlino (#) Fr.: neutralino A hypothetical particle predicted by supersymmetry theories, which aim at relating bosons to fermions. Under certain assumptions, the lightest such partner particle would be stable, and if it is neutral (a "neutralino"), would make a good dark matter candidate. Reasonable neutralino masses range from 30 GeV to 10 TeV. From → neutral + -ino diminutive suffix. |
neutralization natâreš Fr.: neutralisation In optics, the process of combining two lenses having equal and opposite powers to produce a result having no power. Verbal noun of → neutralize. |
neutralize natâridan Fr.: neutraliser To make neutral; cause to undergo neutralization. Infinitive from → neutral. |
neutrino notrino (#) Fr.: neutrino An → elementary particle with zero
→ charge, → spin 1/2, and
very small → rest mass.
The three types of neutrino (electron neutrino, muon neutrino, tau neutrino)
experience only the → weak nuclear force
and gravitational force, and pass easily through matter.
The neutrino undergoes a quantum mechanical phenomenon in which
→ neutrino flavor changes spontaneously to another flavor
(→ neutrino oscillation).
The neutrino was first postulated by Wolfgang Pauli in 1931 to account for the
problem of energy → conservation
in → beta decay. It was discovered in 1956. Neutrino, coined by Enrico Fermi (1901-1954), from neutr(o)→ neuter + -ino diminutive suffix. |
neutrino flavor câšni-ye notrino Fr.: saveur de neutrino Any of the six different varieties of the neutrinos: electron neutrinos, muon neutrinos, tau neutrinos, and their antiparticles. |
neutrino oscillation naveš-e notrino Fr.: oscillation des neutrinos The transition between neutrino types (→ neutrino flavor) which is a probabilistic consequence of → quantum mechanics. A neutrino, when produced, is in a quantum state which has three different masses. Therefore, an electron neutrino emitted during a reaction can be detected as a muon or tau neutrino. In other words, the flavor eigenstates are different from the propagation eigenstates. This phenomenon was discovered in → solar neutrinos as well as in → atmospheric neutrinos. Neutrino oscillation violates the conservation of the → lepton number; it is possible only if neutrinos have a mass. First predicted by Bruno Pontecorvo in 1957, neutrino oscillation has since been observed by several experiments. It resolved the long-standing → solar neutrino problem. The smaller the mass difference between the flavors, the longer the oscillation period, so that oscillations would not occur if all of the flavors were equal in mass or were massless. Moreover, the oscillation period increases with neutrino energy. → neutrino; → oscillation. |
neutron notron (#) Fr.: neutron An uncharged → subatomic particle found in the nucleus of every → atom heavier than → hydrogen. It has a → rest mass of 1.67492 x 10-24 g, 939.566 → MeV, slightly greater than that of the → proton. The neutron is composed of three → quarks (two down and one up). Although the neutron is electrically neutral, it owns a → spin of 1/2 and a → magnetic moment; it can therefore interact magnetically with matter. A free neutron is unstable and disintegrates by → beta decay to a proton, an → electron, and → antineutrino of the electron type: n→ p + e- + ν_e + 0.7823 MeV. Its → mean life is about 15 minutes. The decay of the neutron is associated with a → quark transformation in which a down quark is converted to an up by the → weak interaction. From neutro-, a combining form representing → neutral, + → -on a suffix used in the names of → subatomic particles. |
neutron capture giroft-e notron Fr.: capture de neutron The → nuclear reaction that occurs when an → atomic nucleus captures a → neutron. Neutron capture is the primary mechanism (principally, the → s-process and → r-process) by which very massive nuclei are formed in stars and during → supernova explosions. Instead of → fusion of similar nuclei, heavy, → neutron-capture elements are created by the addition of more and more neutrons to existing nuclei. |
neutron degeneracy vâgeni-ye notron Fr.: dégénérescence des neutrons The state of degeneracy created when the density of matter is so high that neutrons cannot be packed any more closely together. This condition occurs in the core of stars above 1.44 solar masses (→ Chandrasekhar limit) where under the gravitational collapse electrons and protons are forced to combine into neutrons. Therefore, in a → neutron star all the lowest neutron energy levels are filled and the neutrons are forced into higher and higher energy levels, since according to Pauli Exclusion Principle no two neutrons (fermions) can occupy identical states. This creates an effective pressure which prevents further gravitational collapse. However, for masses greater than 3 solar masses, even neutron degeneracy cannot prevent further collapse and it continues toward the black hole state. → neutron; → degeneracy. |
neutron emission gosil-e notron (#) Fr.: émission de neutrons A type of radioactive decay of atoms containing excess neutrons, in which a neutron is ejected from the nucleus. |
neutron excess fozuni-ye notron, ferehbud-e ~ Fr.: excès de neutrons The excess of → neutrons over → protons in an → atomic nucleus: η = (Nn - Np) / (Nn + Np). |
neutron star setâre-ye notroni, notron setâré (#) Fr.: étoile à neutrons An extremely compact ball of matter created from the central core of a star that has collapsed under gravity to such an extent that it consists almost entirely of → neutrons. Neutron stars result from two possible evolutionary scenarios: 1) The → collapse of a → massive star during a → supernova explosion; and 2) The accumulation of mass by a → white dwarf in a → binary system. The mass of a neutron star is the same as or larger than the → Chandrasekhar limit (1.4 → solar masses). Neutron stars are only about 10 km across and have a density of 1014 g cm-3, representing the densest objects having a visible surface. The structure of neutron stars consists of a thin outer crust of about 1 km thickness composed of → degenerate electrons and nuclei, which becomes progressively neutron rich with increasing depth and pressure due to → inverse beta decays. In the main body the matter consists of → superfluid neutrons in equilibrium with their decay products, a few percent protons and electrons. Neutron stars have extremely strong magnetic fields, from 3 x 1010 to 1015 gauss. As of 2010 more than 2000 neutron stars have been catalogued, which show a large variety of manifestations, mainly → pulsars. |
neutron star binary system râžmân-e dorin-e setârehâ-ye noroni Fr.: système binaire d'étoiles à neutron A → binary system composed of two → neutron stars. |
neutron-capture element bonpâr-e giroft-e notron Fr.: élément de capture de neutron A → nucleosynthesis process responsible for the generation of the → chemical elements heavier than the → iron peak elements. There are two possibilities for → neutron capture: the slow neutron-capture process (the → s-process) and the rapid neutron-capture process (the → r-process). The s-process is further divided into two categories: the weak s-component and the main s-component. Massive stars are sites of the weak component of s-process nucleosynthesis, which is mainly responsible for the production of lighter neutron-capture elements (e.g. Sr, Y, and Zr). The s-process contribution to heavier neutron-capture elements (heavier than Ba) is due only to the main s-component. The low- to intermediate-mass stars (about 1.3-8 Msun) in the → asymptotic giant branch (AGB) are usually considered to be sites in which the main s-process occur. There is abundant evidence suggesting that → Type II supernova (SNe II) are sites for the synthesis of the r-process nuclei, although this has not yet been fully confirmed. The observations and analysis on → very metal-poor stars imply that the stars with [Fe/H] ≤ -2.5 might form from gas clouds polluted by a few supernovae (SNe). Therefore, the abundances of → heavy elements in → metal-poor stars have been used to learn about the nature of the nucleosynthetic processes in the early Galaxy (See, e.g., H. Li et al., 2013, arXiv:1301.6097). |
neutronization notroneš Fr.: neutronisation The reaction that transforms a → proton into a → neutron when a proton and an → electron are forced together to make a neutron: p + e-→ n + ν_e. In astronomy, this process occurs during the → core collapse of → massive stars which leads to the formation of → neutron stars. |
never hargez (#) Fr.: jamais 1) Not ever; at no time. M.E., from O.E. næfre "never," compound of ne "not, no," → un- + æfre "ever." Hargez, variant hagarz; Mid.Pers. hagriz, hakarc "ever, always, never;" O.Pers. hakarnciy "once"; Av. hakərət "once;" cf. Skt. sakrt "once; repeated; ever; never;" Gk. hapax "once;" L. semel "once," semper "always;" PIE *smkrt. |
nevertheless hagarzkam Fr.: néanmoins However, notwithstanding, in spite of, still. M.E. natheles, notheles, natheless, from O.E. neuerþeles, that is → never + the "in or by that," "on that account," "in or by so much," + less→ -less, cf. Fr. néanmoins = pas moins; Ger. nichtsdestoweniger. |
new now (#) Fr.: nouveau, neuf Of recent origin, production. O.E. neowe, niowe, niwe; cf. Du. nieuw, Ger. neu, Dan., Swed. ny; cognate with Pers. now, as below, L. novus "new, recent, fresh" (Fr. nouveau, neuf), from PIE *neu- "new, young." Now, from Mid.Pers. nôg "new, fresh;" Av. nauua- "new, fresh;" cf. Skt. náva- "new, fresh, young;" Gk. neos "new, young;" L. novus, as above, cognate with E. new, as above. |
<< < -ne nan nat nav nec Nep neu New New NGC nob nom non non nor nor nuc nuc nul nut > >>