An Etymological Dictionary of Astronomy and Astrophysics
English-French-Persian

فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

M. Heydari-Malayeri    -    Paris Observatory

   Homepage   
   


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

<< < amb dif dif hom > >>

Number of Results: 75 Search : iff
diffuse interstellar medium
  مدیم ِ اندر‌اختری ِ پخشیده   
madim-e andaraxtari-ye paxšidé

Fr.: milieu interstellaire diffus   

The interstellar matter outside condensed molecular clouds. Diffuse interstellar medium consists of a hot intercloud medium, a warm intercloud medium, and a cold neutral medium with hydrogen atom densities nH ~ 0.003, ~ 0.25, and ~ 40 cm-3, and mean gas → kinetic temperatures Tk ~ 5 x 105, ~ 104, and 80 K, respectively.

diffuse; → interstellar; → medium.

diffuse molecular cloud
  ابر ِ مولکولی ِ پخشیده   
abr-e molekuli-ye paxšidé

Fr.: nuage moléculaire diffus   

A type of → molecular cloud in which the → interstellar radiation field is sufficiently attenuated, so that the local fraction of → molecular hydrogen (H2) becomes substantial (> 0.1). However, enough interstellar radiation is still present to → photoionize any atomic carbon, or to → photodissociate → carbon monoxide (CO) such that carbon is predominantly still in the form of C+ (> 0.5). In steady state, diffuse molecular clouds must necessarily be surrounded by diffuse atomic gas, in order to provide the → shielding of radiation. This means that most sightlines that cross a diffuse molecular cloud will also cross → diffuse atomic gas (Snow & McCall, 2006, ARA&A 44, 367).

diffuse; → molecular; → cloud.

diffuse nebula
  میغ ِ پخشیده   
miq-e paxšidé

Fr.: nébuleuse diffuse   

An irregularly shaped and low density interstellar cloud visible in the optical wavelengths.

diffuse; → nebula.

diffuse reflection
  بازتاب ِ پخشیده   
bâztâb-e paxšidé

Fr.: réflexion diffuse   

Reflection of light from a rough or granular surface, which takes place in all directions due to the microscopic irregularities of the interface; opposed to → specular reflection.

diffuse; → reflection.

diffuse transmission
  تراگسیل ِ پخشیده   
tarâgosil-e paxšidé

Fr.: transmission diffuse   

Transmission accompanied by diffusion or scatter to the extent that there is no regular or direct transmission.

diffuse; → transmission.

diffuser
  پخشنده، پخشگر   
paxšandé, paxšgar

Fr.: diffuseur   

A device used to scatter or disperse light emitted from a source.

From → diffuse + -er.

From paxš, present stem of paxšidan, → diffuse, + -andé or -gar (→ detector).

diffusion
  پخش   
paxš (#)

Fr.: diffusion   

1) Movement of a gas or liquid as a result of the random thermal motion of its atoms or molecules.
2) The random spreading out of a beam of radiation on reflection (→ diffuse reflection) or transmission through a translucent medium (such as amber, milk, or frosted glass).
3) In chemical thermodynamics, the process of attaining an equilibrium distribution of the → concentration within the phases. A result of diffusion at constant equilibrium is the equalization of the → chemical potentials.
Related terms: → diffraction; → dispersion; → distribution; → scatter; → scattering.

L. diffusionem, from stem of diffundere "scatter, pour out," from dif- "apart, in every direction," → dis-, + fundere "to melt, cast, pour out," from PIE *gheud-, from root *gheu- "to pour."

Paxš, verbal noun and stem of paxšidandiffuse.

diffusion coefficient
  همگر ِ پخش   
hamgar-e paxš

Fr.: coefficient de diffusion   

A factor of proportionality involved in the → diffusion equation. It may be defined as the amount of the quantity diffusing across a unit area through a unit concentration gradient in unit time. → magnetic diffusivity.

diffusion; → coefficient.

diffusion equation
  هموگش ِ پخش   
hamugeš-e paxš

Fr.: équation de diffusion   

An equation that expresses the time rate of change of a quantity in terms of the product of the diffusion coefficient and the → Laplacian operating on the quantity. For example the diffusion equation for temperature is: ∂T/∂t = D2T.

diffusion; → equation.

diffusion region
  ناحیه‌ی ِ پخش   
nâhiye-ye paxš

Fr.: région de diffusion   

A narrow boundary layer above the solar → photosphere, between two magnetic field lines, where the plasma becomes demagnetized or unfrozen. The presence of a localized magnetic region is necessary for → magnetic reconnection.

local; → -ize; → diffusion; → region.

diffusive
  پخشنده، پخشی   
paxšandé, paxši

Fr.: diffusif, de diffusion   

Tending to diffuse; characterized by → diffusion.

diffuse + → -ive.

diffusivity
  پخشندگی، همگر ِ پخش   
paxšandegi, hamgar-e paxš

Fr.: coefficient de diffusion   

1) The ability to permit or undergo diffusion.
2) → magnetic diffusivity.

diffusive; → -ity.

double-diffusive convection
  همبز ِ دوپخشی   
hambaz-e do paxši

Fr.:   

An instability involving two layers of fluid with opposite gradients of properties. Same as → fingering instability. See also → salt finger. Double-diffusive instabilities commonly occur in any astrophysical fluid that is stable according to the → Ledoux criterion, as long as the entropy and chemical stratifications have opposing contributions to the dynamical stability of the system. They drive weak forms of convection, and can cause substantial heat and compositional → mixing. Two cases can be distinguished. In fingering convection, entropy is stably stratified (∇ - ∇ad < 0), but chemical composition is unstably stratified (∇μ < 0); it is often referred to as → thermohaline convection by analogy with the oceanographic context in which the instability was first discovered. In oscillatory double-diffusive convection, entropy is unstably stratified (∇ - ∇ad > 0), but chemical composition is stably stratified (∇μ > 0); it is related to semiconvection, but can occur even when the → opacity is independent of composition (P. Garaud, 2014, arXiv:1401.0928).

double;→ diffusive; → system.

electron diffraction
  پراش ِ الکترونی   
parâš-e elekroni (#)

Fr.: diffraction des électrons   

A diffraction phenomenon resulting from the passage of electrons through matter, analogous to the diffraction of visible light. This phenomenon is the main evidence for the existence of waves associated with elementary particles; → de Broglie wavelength.

electron; → diffraction.

element diffusion
  پخش ِ بن‌پار   
paxš-e bonpâr

Fr.: diffusion des éléments   

An important physical process occurring in stars, which is the relative separation of the various → chemical elements. It is caused by → gravitational settling and → thermal diffusion, on the one hand, and → radiative levitation on the other. This process, which was described by Michaud (1970) to account for the abundance anomalies observed in → chemically peculiar  → A star, is now recognized as occuring in all types of stars. Its influence on the observed → chemical abundances is extremely variable, however, due to competing macroscopic motions like → convective  → mixing or rotation-induced → turbulence. In the Sun, no observable abundance anomalies are expected from element diffusion, as the time scale of the process is longer than the solar lifetime. However the small induced → depletion of → helium and → heavy elements by about 20% is detectable through → helioseismology. Such detections are more difficult in stars, as only global → oscillation modes can be detected, in contrast to the Sun, where local oscillations of the surface can be analyzed (Théado et al., 2005, A&A 437, 553).

element; → diffusion.

exact differential
  دگرسانه‌ی ِ رزین   
degarsâne-ye razin

Fr.: différentielle exacte   

If N(x,y) is a → function of two → independent variables, then dN = (∂N/∂x)dx + (∂N/∂y)dy is the exact differential.

exact; → differential.

exact differential equation
  هموگش ِ دگرسانه‌ای ِ رزین   
hamugeš-e degarsâneyi-ye razin

Fr.: équation différentielle exacte   

A → differential equation composed of → continuous  → differentiable functions for which certain conditions are fulfilled. The equation M(x,y)dx + N(x,y)dy = 0 is called exact if M(x,y) and N(x,y) are continuous differentiable functions for which the following relationship is fulfilled: ∂M/∂y = ∂N/∂x, and ∂M/∂y and ∂N/∂x are continuous in some region.

exact; → differential; → equation.

first-order differential equation
  هموگش ِ دگرسانه‌ای ِ رایه‌ی ِ نخست   
hamugeš-e degarsâne-yi-ye râye-ye naxost

Fr.: équation différentielle du premier ordre   

A → differential equation containing only the first → derivative. For example, dy/dx = 3x and 2y(dy/dx) + 3x = 5.

first; → order; → differential; → equation.

Fresnel diffraction
  پراش ِ فرنل   
parâš-e Fresnel (#)

Fr.: diffraction de Fresnel   

The diffraction effects obtained when either the source of light or observing screen, or both, are at a finite distance from diffracting aperture or obstacle. → Fraunhofer diffraction.

Named after Jean Augustin Fresnel (1788-1827), French physicist, a key figure in establishing the wave theory of light. His earlier work on interference was carried out in ignorance of that of Thomas Young (1773-1829), English physician and physicist, but later they corresponded and were allies; → diffraction.

gaseous diffusion
  پخش ِ گازی   
paxš-e gâzi

Fr.: diffusion gazeuse   

An → isotope separation process using the different diffusion speeds of → atoms or → molecules for separation. This process is used to divide → uranium hexafluoride (UF6) into two separate streams of U-235 and U-238. Before processing by gaseous diffusion, uranium is first converted from → uranium oxide (U3O8) to UF6. The UF6 is heated and converted from a solid to a gas. The gas is then forced through a series of compressors and converters that contain porous barriers. Because uranium-235 has a slightly lighter isotopic mass than uranium-238, UF6 molecules made with uranium-235 diffuse through the barriers at a slightly higher rate than the molecules containing uranium-238. At the end of the process, there are two UF6 streams, with one stream having a higher concentration of uranium-235 than the other (EVS, a Division of Argonne National Laboratory).

gaseous; → diffusion.

<< < amb dif dif hom > >>