dynamical time scale marpel-e zamâni-ye tavânik Fr.: échelle de temps dynamique 1) The characteristic time it takes a protostellar cloud to collapse
if the pressure supporting it against gravity were suddenly removed;
also known as the → free-fall time. → dynamical; → time-scale. |
Eddington-Sweet time scale marpel-e zamâni-ye Eddington-Sweet Fr.: échelle de temps d'Eddington-Sweet The time required for the redistribution of → angular momentum due to → meridional circulation. The Eddington-Sweet time for a uniformly → rotating star is expressed as: τES = τKH . GM / (Ω2 R3), where τKH is the → Kelvin-Helmholtz time scale, R, M, and L designate the radius, mass, and luminosity respectively, Ω the → angular velocity, and G the → gravitational constant. The Eddington-Sweet time scale can be approximated by τES≅ τKH / χ, where χ is the ratio of the → centrifugal force to → gravity. For the Sun, χ ≅ 10-5 resulting in an Eddington-Sweet time scale which is too long (1012 years), i.e. unimportant. In contrast, for a rotating → massive star χ is not so much less than 1. Hence the Eddington-Sweet circulation is very important in massive stars. Named after the prominent British astrophysicist Arthur S. Eddington (1882-1944), who was the first to suggest these currents (in The Internal Constitution of the Stars, Dover Pub. Inc., New York, 1926) and P. A. Sweet who later quantified them (1950, MNRAS 110, 548); → time scale. |
evolutionary time scale zamân-marpel-e fargašt Fr.: échelle de temps d'évolution The characteristic time it takes an evolving astronomical object to pass from a step to another. → evolutionary; → time scale. |
nuclear time scale marpel-e zamâni-ye haste-yi Fr.: échelle de temps nucléaire The time required for a star to exhaust its hydrogen (H) supply in → nuclear fusion. The nuclear time scale is given by the relation t = E/L, where E is the total nuclear energy that can be generated by a star and L is the stellar → luminosity. Assuming that the end point of fusion is → iron (Fe), the → atomic mass difference between H and Fe is Δm = 0.008 mH. Therefore, the maximum amount of energy a star with a hydrogen mass M can release is Δ M = 0.008 Mc2. The nuclear time scale is then: t = 0.008 c2M/L. However, stars use up only a fraction of their hydrogen supply, because only the inner part of the star is hot enough for fusion. For example, the Sun will spend only about 10% of its hydrogen supply before evolving into a → red giant. In other words, the solar life time on the → main sequence is about 1010 years. |
star formation time scale marpel-e zamâni-ye diseš-e setâre Fr.: échelle de temps de formation d'étoiles The time necessary for a star to form. It depends inversely on the stellar mass. → star formation; → time scale. |
time scale marpel-e zamân Fr.: échelle de temps A measure of duration of a specific process, such as → crossing time, → dynamical time scale, → evolutionary time scale, → Kelvin-Helmholtz time scale, → nuclear time scale, → photon escape time, → relaxation time, → star formation time scale. |