# An Etymological Dictionary of Astronomy and AstrophysicsEnglish-French-Persian

## فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

### M. Heydari-Malayeri    -    Paris Observatory

Homepage

Number of Results: 6 Search : generalize
 generalize   هروین کردن، هروینیدن   harvin kardan, harvinidanFr.: généraliser   To make general, to include under a general term; to reduce to a general form. To infer or form a general principle, opinion, conclusion, etc. from only a few facts, examples, or the like.→ general; → -ize. generalized   هروینیده   harvinidéFr.: généralisé   Made general. → generalized coordinates; → generalized velocities.P.p. of → generalize generalized coordinates   هماراهای ِ هروینیده   hamârâhâ-ye harvinidéFr.: coordonnées généralisées   In a material system, the independent parameters which completely specify the configuration of the system, i.e. the position of its particles with respect to the frame of reference. Usually each coordinate is designated by the letter q with a numerical subscript. A set of generalized coordinates would be written as q1, q2, ..., qn. Thus a particle moving in a plane may be described by two coordinates q1, q2, which may in special cases be the → Cartesian coordinates x, y, or the → polar coordinates r, θ, or any other suitable pair of coordinates. A particle moving in a space is located by three coordinates, which may be Cartesian coordinates x, y, z, or → spherical coordinates r, θ, φ, or in general q1, q2, q3. The generalized coordinates are normally a "minimal set" of coordinates. For example, in Cartesian coordinates the simple pendulum requires two coordinates (x and y), but in polar coordinates only one coordinate (θ) is required. So θ is the appropriate generalized coordinate for the pendulum problem. generalized forces   نیروهای ِ هروینیده   niruhâ-ye harvinidéFr.: forces généralisées   In → Lagrangian dynamics, forces related to → generalized coordinates. For any system with n generalized coordinates qi (i = 1, ..., n), generalized forces are expressed by Fi = ∂L/∂qi, where L is the → Lagrangian function.→ generalized; → force. generalized momenta   جنباک‌های ِ هروینیده   jonbâkhâ-ye harvinidéFr.: quantité de mouvement généralisée   In → Lagrangian dynamics, momenta related to → generalized coordinates. For any system with n generalized coordinates qi (i = 1, ..., n), generalized momenta are expressed by pi = ∂L/∂q.i, where L is the → Lagrangian function.→ generalized; → momentum. generalized velocities   تنداهای ِ هروینیده   tondâhâ-ye harvinidéFr.: vitesses généralisées   The time → derivatives of the → generalized coordinates of a system.→ generalized; → velocity.