An Etymological Dictionary of Astronomy and Astrophysics
English-French-Persian

فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

M. Heydari-Malayeri    -    Paris Observatory

   Homepage   
   


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Number of Results: 8 Search : axiom
associative axiom
  بنداشت ِ آهزش   
bondâšt-e âhazeš

Fr.: axiome d'associativité   

A basic rule in → group theory stating that if a, b and c are members of a group then (a * b) * c and a * (b * c) are members of the group.

associative; → axiom.

axiom
  بنداشت، ارز‌آغازه   
bondâšt (#), arzâqâzé (#)

Fr.: axiome   

In any system of mathematics or logic, a statement or proposition from which secondary statements or propositions are derived. The truth of an axiom is either taken for granted or assumed. In modern practice, axiom and → postulate have the same meaning.

M.Fr. axiome, from L. axioma, from Gk. axioma "authority," literally "something worthy," from axioun "to think worthy," from axios "worthy," from PIE adj. *ag-ty-o- "weighty," from base *ag- "to drive, draw, move."

Bondâšt, literally "taking as the base," from bon "root, origin, base" + dâšt "held," from dâštan "to have, to hold, to maintain, to consider."
Arzâqâzé, from arz "value" + âqâzé "beginning, principle," from âqâz "beginning."

axiom of constraints
  بنداشت ِ پاوندها   
bondâšt-e pâvandhâ

Fr.: axiome des contraintes   

An axiom in → statics, stating that any → constrained body can be treated as a → free body detached from its → constraints, provided the latter are represented by their → reactions.

axiom; → constraint.

axiomatic
  بنداشتی   
bondâšti

Fr.: axiomatique   

Of, relating to, or resembling an → axiom.

axiom; → -ic.

axiomatic system
  راژمان ِ بنداشتی   
râžmân-e bondâšti

Fr.: système axiomatique   

Any system of → logic which explicitly states → axioms from which → theorems can be → deduced.

axiomatic; → system.

closure axiom
  بنداشت ِ بندش   
bondâšt-e bandeš

Fr.: axiome de clôture   

A basic rule in → group theory stating that if a and b are a group element then a * b is also a group element.

closure; → axiom.

identity axiom
  بنداشت ِ ایدانی   
bondâšt-e idâni

Fr.: axiome d'identité   

A basic rule in → group theory stating that there exists a unit group element e, called the identity, such that for any element a of the group a * e = e * a = a.

identity; → axiom.

inverse axiom
  بنداشت ِ وارون   
bondâšt-e vârun

Fr.: axiome d'inverse   

A basic rule in → group theory stating that for any element a of a group there is an element a-1 such that a * a-1 = a-1 * a = e.

inverse; → axiom.