An Etymological Dictionary of Astronomy and Astrophysics
English-French-Persian

فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

M. Heydari-Malayeri    -    Paris Observatory

   Homepage   
   


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Number of Results: 4 Search : friction
dynamical friction
  مالش ِ توانیک   
mâleš-e tavânik

Fr.: frottement dynamique   

The gravitational interaction between a relatively massive body and a field of much less massive bodies through which the massive body travels. As a result, the moving body loses → momentum and → kinetic energy. An example of dynamical friction is the sinking of massive stars to the center of a → star cluster, a process called → mass segregation. Dynamical friction plays an important role in → stellar dynamics. It was first quantified by Chandrasekhar (1943).

dynamical; → friction.

friction
  مالش   
mâleš (#)

Fr.: frottement   

The resisting force offered by one body to the relative motion of another body in contact with the first.

From L. frictionem "a rubbing, rubbing down," from fricare "to rub."

Mâleš, verbal noun of mâlidan "to rub," from, variants parmâs "contact, touching," marz "frontier, border, boundary," Mid.Pers. mâlitan, muštan "to rub, sweep;" Av. marəz- "to rub, wipe," marəza- "border, district;" PIE base *merg- "boundary, border;" cf. L. margo "edge" (Fr. marge "margin"); P.Gmc. *marko; Ger. Mark; E. mark, margin.

Stokes friction factor
  کروند ِ مالش ِ استوکس   
karvand-e mâleš-e Stokes

Fr.: facteur de friction de Stokes   

For the translational motion of a spherical body moving in a → viscous fluid, the proportionality factor between the uniform flow velocity far from the sphere and the drag force, provided no-slip boundary condition and small → Reynolds numbers: f = 6πηR, where η is the Reynolds number and R radius of the sphere.

Stokes; → friction; → factor.

tidal friction
  مالش ِ کشندی   
mâleš-e kešandi

Fr.: friction de marées   

The → friction exerted on a → primary body (Earth) because of the → phase lag between the → tides and the → gravitational attraction of the → secondary body (Moon). The Earth's → rotation is faster than the Moon's orbital motion; therefore the Earth's → tidal bulges lead the Moon on its orbit. This has two important effects: The Earth is being pulled slightly "back" from its sense of rotation. So the Earth's rotation slows (by about 1 second every 50,000 years). Moreover, the Moon is being pulled slightly "forward" on its orbit. So it is harder for the Earth to hold it in place, and it moves further away from the Earth (by about 3-4 cm per yr). Tidal friction tends to synchronize the rotation period of a close-in companion with the period of its orbital motion around the primary. → tidal coupling.

tidal; → friction.