# An Etymological Dictionary of Astronomy and AstrophysicsEnglish-French-Persian

## فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

### M. Heydari-Malayeri    -    Paris Observatory

Homepage

Number of Results: 8 Search : similar
 self-similar   خودهمانند   xod-hamânadFr.: auto-similaire   1) Of a geometric figure, having a structure analogous or identical to its overall structure. → fractal. 2) The quality of a variable entity in which the shape does not change with time, such as a → self-similar process.→ self-; → similar. self-similar process   فراروند ِ خودهمانند   farâravand-e xod-hamânadFr.: processus auto-similaire   A process that is invariant in distribution under scaling of time. Schematically, images taken of such a process at different time scales will look similar.→ self-; → similar; → process. self-similarity   خودهمانندی   xod-hamânadiFr.: auto-similarité   The property of being → self-similar.→ self-; → similarity. similar   همانند   hamânand (#)Fr.: similaire   1) Geometry: Having the same shape; representing the same figure drawn to different scales (same corresponding angles and proportional sides). 2) Math.: Related by means of a → similarity transformation.From Fr. similaire, from L. similis "like," → simulate.Hamânand, contraction of hammânand, from ham-, → com-, + mânand "resembling, like," → simulate. similar matrices   ماتریس‌های ِ همانند   mâtrishâ-ye hamânand (#)Fr.: matrices similaires   Two → square matrices A and B that are related by B = X-1AX, where X is a square → nonsingular matrix.→ similar; → matrix. similar polygons   چندبرهای ِ همانند   candbarhâ-ye hamânandFr.: polygone similaires   Polygons that are exactly the same shape, but can be different sizes.→ similar; → polygon. similarity   همانندی   hamânandi (#)Fr.: similarité   The state of being similar; likeness; resemblance.→ similar; → -ity. similarity transformation   ترادیسش ِ همانندی   tarâdiseš-e hamânandiFr.: transformation de similarité   1) A transformation that preserves angles and changes all distances in the same ratio. 2) A transformation of the form B = X-1AX relating two → square matrices A and B.