<< < "no abs acc ads amb ann arg ato B-m bla bro cat Che co- col com com con con con cor cro dec def dep dif dil dis dis dur eje emi equ evo exp fab fis fra fus geo gra gra har Huy ima ind inf ins int int ion jum law lin low mag mat mic Moo nec non nuc obs opp Ori par per per phy ple pop pre pro pro pul rad rad Ray rec reg rep Ric rot Sch sec Sha soc spe sta ste sub syn the tot tri uni Ven vis wor > >>
radiation belt kamarband-e tâbeš (#), ~ tâbeši (#) Fr.: ceinture de radiations A ring-shaped region in the → magnetosphere of a planet in which charged particles are trapped by the planet's magnetic field. The radiation belts surrounding Earth are known as the → Van Allen belts. |
radiation constant pâypa-ye tâbeš Fr.: constante de rayonnement Same as → radiation density constant. |
radiation damping mirâyi-e tâbeši Fr.: amortissement par rayonnement Damping of a system which loses energy by → electromagnetic radiation. |
radiation density constant pâypa-ye cagâli-ye tâbeš Fr.: constante de rayonnement The constant related to the total energy radiated by a → blackbody and defined as: a = 4σ/c, where σ is the → Stefan-Boltzmann constant and c the → speed of light. Its value is a = 7.5657 x 10-15 erg cm-3 K-4. Same as → radiation constant. |
radiation era dowrân-e tâbeš Fr.: ère du rayonnement The epoch in the history of the Universe, lasting from the → Big Bang until about 400,000 years later, when the temperature had dropped to 109 K and the rate of electron-positron → pair annihilation exceeded the rate of their production, leaving radiation the dominant constituent of the Universe. The radiation era was followed by the → matter era. |
radiation field meydân-e tâbeš Fr.: champ de rayonnement 1) The portion of an → electromagnetic field outside the
→ induction field where there is a power flow of both
→ magnetic and → electric
components in a well-defined relationship. |
radiation length derâzâ-ye tâbeš Fr.: longueur de rayonnement The mean distance traveled by a photon or particle in a given medium before its energy is reduced by a factor e due to its interaction with matter. |
radiation pattern olgu-ye tâbeš Fr.: diagramme de rayonnement Same as → antenna pattern. |
radiation pressure fešâr-e tâbeš Fr.: pression de radiation The → momentum carried by → photons to a surface exposed to → electromagnetic radiation. Stellar radiation pressure on big and massive objects is insignificant, but it has considerable effects on → gas and → dust particles. Radiation pressure is particularly important for → massive stars. See, for example, → Eddington limit, → radiation-driven wind , and → radiation-driven implosion. The → solar radiation pressure is also at the origin of various physical phenomena, e.g. → gas tails in → comets and → Poynting-Robertson effect. |
radiation sickness bimâri-ye tâbeši Fr.: mal des rayons An illness resulting from excessive exposure to ionizing radiation. The earliest symptoms are nausea, vomiting, and diarrhea, which may be followed by loss of hair, hemorrhage, inflammation of the mouth and throat, and general loss of energy. → radiation; sickness, M.E. siknesse, seknesse; O.E. sēocnesse, from seoc + suffix -ness. Bimâri "sickness, infirmity, disease," from bimâr "sick, infirm, afflicted;" Mid.Pers. vêmâr "sick, ill;" maybe by corruption of Proto-Iranian *amavayā-bara- "bearing illness;" cf. Av. amavayā- "pain, suffering, affliction;" Skt. ámīvā- "pain, grief, distress" + *bara- "bearing;" cf. Av. bar- "to bear, carry;" Mod.Pers. bar-, bordan "to bear, carry, lead." Alternatively, from *vi-mar-, prefixed *mar- "to die;" cf. Av. mar- "to die;" Mod.Pers. mir-, mordan "to die;" Skt. mar- "to die;" cognate with Gk. emorten "died;" L. morior "to die;" tâbeši related to tâbeš, → radiation. |
radiation spectrum binâb-e tâbeš Fr.: spectre de rayonnement The components of radiation arranged in order of their wavelengths, frequencies, or quantum energies. For particle radiation they are arranged in order of their kinetic energies. |
radiation temperature damâ-ye tâbeš Fr.: température de rayonnement The temperature of a source calculated assuming that it behaves as a → blackbody that radiates with the same intensity at the same frequency. Compared to the → effective temperature, the radiation temperature is measured over a narrow region of the → electromagnetic spectrum. → radiation; → temperature. |
radiation transfer tarâvâž-e tâbeš Fr.: transfert radiatif, ~ de rayonnement |
radiation transfer equation hamugeš-e tarâvâž-e tâbeš Fr.: équation de transfert radiatif, ~ de rayonnement |
radiation-dominated Universe giti-ye tâbeš-ciré Fr.: Univers dominé par le rayonnement An early epoch in the history of the → Universe when the radiation → density parameter was Ωr≈ 1, while other density parameters had negligible contributions. A radiation-dominated Universe is characterized by R/R0 ∝ t1/2, where R is the → cosmic scale factor and t is time. According to the → Big Bang model, the radiation-dominated phase was followed by the → matter-dominated phase. |
radiation-driven implosion (RDI) forukaft az râh-e tâbeš Fr.: implosion induit par rayonnement A hydrodynamic process occurring in star forming regions where a neutral cloud (→ clump) is subjected to the intense ultraviolet radiation of a newly-born → massive star. The gas within the layer exposed to the radiation is ionized and forms an → ionization front at the front surface. The increased pressure due to temperature rise at the top layer drives an → isothermal → shock front into the clump, which compresses the neutral gas ahead of it, below the surface. A density → gradient builds up leading rapidly to the formation of a condensed core. With further concentration of the gas, the hydrogen density in the center of the core increases drastically, reaching 108 cm-3 about 4 x 105 years after the first impact of the ionizing radiation on the clump, according to current models (e.g. Bertoldi 1989, ApJ 346, 735; Miao et al. 2006, MNRAS 369, 143, and references therein). The core can develop further to form a → cometary globule or → collapse under its self-gravity, eventually giving rise to new → low-mass stars (→ triggered star formation). In the process, the whole clump accelerates away from the initial ionizing star. Indeed, the gas evaporated off the side of the clump facing the ionizing star can create a rocket effect accelerating the clump away from the star (with a velocity of up to 5 km s-1), while losing part of its initial mass. |
radiation-driven mass loss dastraft-e jerm az râh-e bâd-e tâbeši Fr.: perte de masse par vent radiatif The → mass loss experienced by a → massive star due to the effect of → radiation-driven wind. |
radiation-driven wind bâd-e tâbeši, ~ tâbešzâd Fr.: vent radiatif The loss of matter from the → photosphere due to the acceleration imparted to the outer layers of the star by photons created inside the star. The coupling between radiation and matter creates a → radiative acceleration that may exceed the → gravity. This mechanism is particularly important in → massive stars, since the luminosity is high and therefore the number of energetic ultraviolet photons important. Same as → line-driven wind. |
radiationless relaxation vâhaleš-e bitâbeš Fr.: relaxation sans rayonnement A process in which a molecule relaxes without emitting a → photon. → radiation; → -less; → relaxation. |
radiative acceleration šetâb-e tâbeši Fr.: accélération radiative The acceleration imparted to matter by → radiation pressure. → radiative; → acceleration. |
<< < "no abs acc ads amb ann arg ato B-m bla bro cat Che co- col com com con con con cor cro dec def dep dif dil dis dis dur eje emi equ evo exp fab fis fra fus geo gra gra har Huy ima ind inf ins int int ion jum law lin low mag mat mic Moo nec non nuc obs opp Ori par per per phy ple pop pre pro pro pul rad rad Ray rec reg rep Ric rot Sch sec Sha soc spe sta ste sub syn the tot tri uni Ven vis wor > >>