<< < -es -it -sc 201 951 abe abs abs aca acc acc aco act ada adh ado aer aft air Alf alg alk alp Alt alt amb ana And ang ani ann ant ant ant apo app app Apu arc arg Arn art ass ast ast ast atm ato att aur aut avo azi bac bal bar bar bat Bea Bel bet bia big bin bio Bir bla bla blo Blu bol Boo bou box bre Bri bro bur cal cal Can cap car Car cat cau cel cen cen cha Cha cha che Chi chr cir cir civ cla clo clo CMB coa coe coh col col col com com com com com com com com Com con con con con con con con con con con con con coo cor cor cor Cos cos cos cou cou cra cri cro cry cul cur cyc D l dar dat day dea dec dec dec def def deg Del Den dep der det deu dew dic dif dif dil dip dir dis dis dis dis dis diu dog Dop dou Dra Dsc dus dwa dyn Dys Ear ecc eco edg egg Ein Ela ele ele ele ele ell eme emp enc eng ent epi equ equ equ eru eth Eur eve exa exc exe exi exo exp ext ext ext fab fai Fan fea fem fer fie fil fir fir fla fli flu foc for for for fra fre fre fri fun fuz gal gal gal Gam gau Gau gen geo geo geo geo Gib glo gov gra gra gra gra gre gro Gui H-a hal Ham har Hay hea hei hel Hel her het hie hig hoa hom hor hot Hub Hug hur hyd hyd hyl hyp ice ide ima ima imp imp inc inc ind ine inf inf inf ing inn ins ins int int int int int int int int inv inv ion iro Isl iso iso Jab jet Jov Jup Kar Kep kil Kip Kra Lag Lam Lan Lar las law lea Leg Leo lev lig lim lin lin lin lit loc loc log Lor low lum lun lun Lym Mac mag mag mag mag mag mai Mal map mas mas mat Mau mea mea med Men mer Mes Met met mic mic Mie mil min Mir mix mod mol mom Moo mor mov mul mur n-b nan nat nea neg Ner neu new New NGC noc nom non non nor nor nuc nuc nul nut obj obl obs occ oct off old one ope opp opt opt orb ord org Ori osc oth ove Owl P-s Pal par par par par Pas pat pec pen per per per per per Pha pha pho pho pho phy pie pix Pla pla pla pla Pli Poi pol pol pol pol por pos pos pow pre pre pre pre pri pri pri pro pro pro pro pro pro pro pub pul pyc qua qua qua qua qui rad rad rad rad rad rad rai ran rar Ray rea Rea rec rec red red ref ref reg rel rel rel ren res res res res ret rev Ric rig rin roc roo rot rot rur S5- Sal sat sca sca Sch sci Scu sec sec sed sel sel sem seq set sha she sho sid sie sil sim sin sit sky slo sno sod sol sol sol sol son sou spa spa spe spe spe spe sph spi spo squ sta sta sta sta ste ste ste Sti sto str str sub sub sub sul sup sup sup sup sur sur syl syn sys tal Tay tel ten ter tex the the the the Tho thr tid tim Tit too Tor tra tra Tra tra Tra tri Tri tru tub tur two Typ ult ult unc uni uni uni upl ura uti val var vec vel ver Ver vie vir vis vis vol W-R war wav wav wea Wei wha wid win WN3 Wol wri xen yok zen zij > >>
egg toxm, xâg Fr.: œuf 1) An oval or round object laid by a female bird, reptile, fish,
or invertebrate, usually containing a developing embryo.
The eggs of birds are enclosed in a chalky shell, while those
of reptiles are in a leathery membrane. M.E., from Old Norse egg, cognate with O.Saxon, M.Du., Du., O.H.G., Ger. Ei, probably from PIE *owyo-/*oyyo- "egg;" source of Pers. xâg, as below. Toxm, → seed. |
egress osgâm Fr.: émersion The reappearance of a celestial body after an eclipse, an occultation, or a transit; same as emersion. → ingress. From L. egressus, from egredi "to go out," from → ex- "out" + -gredi, comb. form of gradi "to walk, go, step;" from PIE *ghredh- (cf. Lith. gridiju "to go, wander," O.C.S. gredo "to come"). Osgâm "going out," from os- "out," → ex-, + gâm "step, pace," Mid.Pers. gâm, O.Pers. gam- "to come; to go," Av. gam- "to come; to go," jamaiti "goes," Mod.Pers. âmadan "to come," Skt. gamati "goes," Gk. bainein "to go, walk, step," L. venire "to come," Tocharian A käm- "to come," O.H.G. queman "to come," E. come; PIE root *gwem- "to go, come." |
EHB star setâre-ye EHB Fr.: étoile EBH Same as → extreme horizontal branch star. |
eigenfunction viž-karyâ Fr.: fonction propre 1) Math.: An → eigenvector for a linear
→ operator on a → vector space
whose vectors are → functions. Also known as
proper function. From Ger. Eigenfunktion, from eigen- "characteristic, particular, own" (from P.Gmc. *aigana- "possessed, owned," Du. eigen, O.E. agen "one's own") + → function. Viž-karyâ, from viž, contraction of vižé "particular, charcteristic" + karyâ, → function. Vižé, from Mid.Pers. apēcak "pure, sacred," from *apa-vēcak "set apart," from prefix apa- + vēcak, from vēxtan (Mod.Pers. bixtan) "to detach, separate, sift, remove," Av. vaēk- "to select, sort out, sift," pr. vaēca-, Skt. vic-, vinakti "to sift, winnow, separate; to inquire." |
eigenstate viž-hâlat Fr.: état propre Quantum mechanics: A dynamical state whose state vector (or wave function) is an → eigenvector of an → operator corresponding to a specified physical quantity. → eigenfunction; → state. |
eigenvalue viž-arzé Fr.: valeur propre 1) Math.: The one of the → scalars λ such
that T(v) = λv, where T is a linear → operator
on a → vector space, and v is an
→ eigenvector. → eigenfunction; → value. |
eigenvector viž-bordâr Fr.: vecteur propre Math.: A nonzero vector v whose direction is not changed by a given linear transformation T; that is, T(v) = λ v for some scalar λ. → eigenfunction; → vector. |
eight hašt (#) Fr.: huit A → cardinal number between → seven and → nine. M.E. eighte, from O.E. eahta, æhta, related to O.Norse atta, Swed. åtta, Du. acht, O.H.G. Ahto, Ger. acht; Pars. hašt, as below, from PIE *okto(u) "eight." Hašt, from Mid.Pers. hašt; Av. ašta; cognate with Skt. asta; Gk. okto; L. octo (from which It. otto, Sp. ocho, Fr. huit). |
einstein einstein (#) Fr.: einstein A unit of radiation energy sometimes used in the investigation of photochemical processes. The unit is defined as NAhν, where NA is → Avogadro's number and hν is the energy of a → quantum of the radiation. One einstein (or Einstein unit) is the energy per → mole of photons carried by a beam of monochromatic light. Named for Albert Einstein (1879-1955). |
Einstein coefficient hamgar-e Einstein Fr.: coefficient d'Einstein A measure of the probability that a particular atomic transition leading to the formation of an atomic spectral line occurs. The coefficient of spontaneous emission is denoted by Aij, and the coefficient of stimulated emission by Bij, i representing the lower level and j is the upper level. Named after Albert Einstein (1879-1955) who introduced the coefficients in 1916; → coefficient. |
Einstein cross calipâ-ye Einstein Fr.: croix d'Einstein An image of a distant quasar (redshift 1.7) formed by a foreground spiral galaxy (redshift 0.039) through gravitational lensing. The image of the quasar is split into four point sources forming a cross at the center of the galaxy. |
Einstein equivalence principle parvaz-e hamug-arzi-ye Einstein Fr.: principe d'équivalence d'Einstein The → equivalence principle as stated by Einstein, on which is
based the theory of → general relativity. It comprises
the three following items: → Einstein; → equivalence; → principle. |
Einstein model model-e Einstein Fr.: modèle d'Einstein A model for the → specific heat of solids in which the specific heat is due to the vibrations of the atoms of the solids. The vibration energy is → quantized and the atoms have a single frequency, ν. Put forward in 1907 by Einstein, this model was the first application of → quantum theory to the solid state physics. The expression for the specific heat is given by: CV = 3Rx2ex/(ex -1)2, where R is the → gas constant, x = TE/T, TE = hν/k, h is → Planck's constant, and k is → Boltzmann's constant. TE is called the → Einstein temperature. This model could explain the temperature behavior of specific heat but not very satisfactorily at low temperatures. It has therefore been superseded by the → Debye model. See also → Dulong-Petit law. Albert Einstein in 1907; → model. |
Einstein notation namâdgân-e Einstein Fr.: convention Einstein A notation convention in → tensor analysis whereby whenever there is an expression with a repeated → index, the summation is done over that index from 1 to 3 (or from 1 to n, where n is the space dimension). For example, the dot product of vectors a and b is usually written as: a.b = Σ (i = 1 to 3) ai.bi. In the Einstein notation this is simply written as a.b = ai.bi. This notation makes operations much easier. Same as Einstein summation convention. |
Einstein radius šo'â'-e Einstein Fr.: rayon d'Einstein In gravitational lens phenomenon, the critical distance from the → lensing object for which the light ray from the source is deflected to the observer, provided that the source, the lens, and the observer are exactly aligned. Consider a massive object (the lens) situated exactly on the line of sight from Earth to a background source. The light rays from the source passing the lens at different distances are bent toward the lens. Since the bending angle for a light ray increases with decreasing distance from the lens, there is a critical distance such that the ray will be deflected just enough to hit the Earth. This distance is called the Einstein radius. By rotational symmetry about the Earth-source axis, an observer on Earth with perfect resolution would see the source lensed into an annulus, called Einstein ring, centered on its position. The size of an Einstein ring is given by the Einstein radius: θE = (4GM/c2)0.5 (dLS/(dL.dS)0.5, where G is the → gravitational constant, M is the mass of the lens, c is the → speed of light, dL is the angular diameter distance to the lens, dS is the angular diameter distance to the source, and dLS is the angular diameter distance between the lens and the source. The equation can be simplified to: θE = (0''.9) (M/1011Msun)0.5 (D/Gpc)-0.5. Hence, for a dense cluster with mass M ~ 10 × 1015 Msun at a distance of 1 Gigaparsec (1 Gpc) this radius is about 100 arcsec. For a gravitational → microlensing event (with masses of order 1 Msun) at galactic distances (say D ~ 3 kpc), the typical Einstein radius would be of order milli-arcseconds. |
Einstein ring halqe-ye Einstein Fr.: anneau d'Einstein The apparent shape of a background source unsergoing the effect of → gravitational lensing as seen from Earth, provided that the source, the intervening lens, and the observer are in perfect alignement through → Einstein radius. |
Einstein solid model-e Einstein Fr.: modèle d'Einstein Same as → Einstein model. |
Einstein static Universe giti-ye istâ-ye Einstein Fr.: Univers stationnaire d'Einstein A cosmological model in which a static (neither expanding nor collapsing) Universe is maintained by introducing a cosmological repulsion force (in the form of the cosmological constant) to counterbalance the gravitational force. |
Einstein temperature damâ-ye Einstein (#) Fr.: température d'Einstein A characteristic parameter occurring in the → Einstein model of → specific heats. → Einstein; → temperature. |
Einstein tensor tânsor-e Einstein (#) Fr.: tenseur d'Einstein A mathematical entity describing the → curvature of → space-time in → Einstein's field equations, according to the theory of → general relativity. It is expressed by Gμν = Rμν - (1/2) gμνR, where Rμν is the Ricci tensor, gμν is the → metric tensor, and R the scalar curvature. This tensor is both symmetric and divergence free. Named after Albert Einstein (1879-1955); → tensor. |
<< < -es -it -sc 201 951 abe abs abs aca acc acc aco act ada adh ado aer aft air Alf alg alk alp Alt alt amb ana And ang ani ann ant ant ant apo app app Apu arc arg Arn art ass ast ast ast atm ato att aur aut avo azi bac bal bar bar bat Bea Bel bet bia big bin bio Bir bla bla blo Blu bol Boo bou box bre Bri bro bur cal cal Can cap car Car cat cau cel cen cen cha Cha cha che Chi chr cir cir civ cla clo clo CMB coa coe coh col col col com com com com com com com com Com con con con con con con con con con con con con coo cor cor cor Cos cos cos cou cou cra cri cro cry cul cur cyc D l dar dat day dea dec dec dec def def deg Del Den dep der det deu dew dic dif dif dil dip dir dis dis dis dis dis diu dog Dop dou Dra Dsc dus dwa dyn Dys Ear ecc eco edg egg Ein Ela ele ele ele ele ell eme emp enc eng ent epi equ equ equ eru eth Eur eve exa exc exe exi exo exp ext ext ext fab fai Fan fea fem fer fie fil fir fir fla fli flu foc for for for fra fre fre fri fun fuz gal gal gal Gam gau Gau gen geo geo geo geo Gib glo gov gra gra gra gra gre gro Gui H-a hal Ham har Hay hea hei hel Hel her het hie hig hoa hom hor hot Hub Hug hur hyd hyd hyl hyp ice ide ima ima imp imp inc inc ind ine inf inf inf ing inn ins ins int int int int int int int int inv inv ion iro Isl iso iso Jab jet Jov Jup Kar Kep kil Kip Kra Lag Lam Lan Lar las law lea Leg Leo lev lig lim lin lin lin lit loc loc log Lor low lum lun lun Lym Mac mag mag mag mag mag mai Mal map mas mas mat Mau mea mea med Men mer Mes Met met mic mic Mie mil min Mir mix mod mol mom Moo mor mov mul mur n-b nan nat nea neg Ner neu new New NGC noc nom non non nor nor nuc nuc nul nut obj obl obs occ oct off old one ope opp opt opt orb ord org Ori osc oth ove Owl P-s Pal par par par par Pas pat pec pen per per per per per Pha pha pho pho pho phy pie pix Pla pla pla pla Pli Poi pol pol pol pol por pos pos pow pre pre pre pre pri pri pri pro pro pro pro pro pro pro pub pul pyc qua qua qua qua qui rad rad rad rad rad rad rai ran rar Ray rea Rea rec rec red red ref ref reg rel rel rel ren res res res res ret rev Ric rig rin roc roo rot rot rur S5- Sal sat sca sca Sch sci Scu sec sec sed sel sel sem seq set sha she sho sid sie sil sim sin sit sky slo sno sod sol sol sol sol son sou spa spa spe spe spe spe sph spi spo squ sta sta sta sta ste ste ste Sti sto str str sub sub sub sul sup sup sup sup sur sur syl syn sys tal Tay tel ten ter tex the the the the Tho thr tid tim Tit too Tor tra tra Tra tra Tra tri Tri tru tub tur two Typ ult ult unc uni uni uni upl ura uti val var vec vel ver Ver vie vir vis vis vol W-R war wav wav wea Wei wha wid win WN3 Wol wri xen yok zen zij > >>