An Etymological Dictionary of Astronomy and Astrophysics

فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

M. Heydari-Malayeri    -    Paris Observatory



<< < B r bac Bal Bar Bar Be Bee Bes bia big bin bin bip BL Bla bli blu Boh Bon bot bow bre bri bro bur > >>

Number of Results: 487
Barycentric Julian Date (BJD)
  گاهداد ِ ژولی‌ین ِ گرانیگاهی   
gâhdâd-e žulian-e gerânigâhi

Fr.: date julienne barycentrique   

The → Julian Date referenced to the → barycenter of the → solar system. The BJD is more precise than the → Heliocentric Julian Day because the Sun is not stationary. It moves due to the → gravitational attraction of Jupiter and the other planets.

barycentric; → Julian Date.


Fr.: baryogénèse   

The hypothetical mechanism of creating the → baryon asymmetry in the → Universe. Universe. Explaining the observed matter asymmetry is an important open question in physical cosmology. → Sakharov conditions.

From baryo-, from → baryon + → -genesis.

bâriyon (#)

Fr.: baryon   

Any of the class of the heaviest → subatomic particles that includes → protons, → neutrons, as well as a number of short-lived particles whose decay products include protons. Baryons obey the → Fermi-Dirac statistics. They form a subclass of the → hadrons and are further subdivided into → nucleons and → hyperons.

Gk. barys "heavy" + → -on, from "fermion."

baryon acoustic oscillation (BAO)
  نوش ِ صداییک ِ باریونی   
naveš-e sedâyik-e bâryoni

Fr.: oscillation acoustique baryonique   

In cosmology, one of a series of peaks and troughs that are present in the power spectrum of matter fluctuations after the → recombination era, and on large scales. At the time of the Big Bang, and for about 380,000 years afterwards, Universe was ionized and photons and baryons were tightly coupled. Acoustic oscillations arose from perturbations in the primordial plasma due to the competition between gravitational attraction and gas+photons pressure. After the epoch of recombination, these oscillations froze and imprinted their signatures in both the → CMB and matter distribution. In the case of the photons, the acoustic mode history is manifested as the high-contrast Doppler peaks in the temperature anisotropies. As for baryons, they were in a similar state, and when mixed with the non-oscillating → cold dark matter perturbations, they left a small residual imprint in the clustering of matter on very large scales, ~100 h-1Mpc (h being the → Hubble constant in units of 100 km s-1 Mpc-1). The phenomenon of BAOs, recently discovered using the Sloan Digital Sky Survey data, is a confirmation of the current model of cosmology. Like → Type Ia supernovae, BAOs provide a → standard candle for determining cosmic distances. The measurement of BAOs is therefore a powerful new technique for probing how → dark energy has affected the expansion of the Universe (see, e.g., Eisenstein 2005, New Astronomy Reviews 49, 360; Percival et al. 2010, MNRAS 401, 2148).

baryon; → acoustic; → oscillation.

baryon asymmetry
  ناهمامونی ِ باریون   
nâhamâmuni-ye bariyon

Fr.: asymmétrie baryonique   

The observation that in the present → Universe there is → matter but not much → antimatter. Observations do not show the presence of galaxies made of antimatter, nor gamma rays are observed that would be produced if large entities of antimatter would undergo → annihilation with matter. However, the → early Universe could have been baryon symmetric, and for some reason the matter excess has been generated, through some process called → baryogenesis. → Sakharov conditions.

baryon; → asymmetry.

baryon number
  عدد ِ باریونی   
adad-e bâriyoni (#)

Fr.: nombre baryonique   

1) The difference between the total number of → baryons and the total number of → antibaryons in a system of → subatomic particles. It is a measure of → baryon asymmetry and is defined by the quantity η = (nb - nb-)/nγ, called the → baryon-photon ratio, where nb is the → comoving number density of baryons, nb- is the number of antibaryons, and nγ is that of photons. The value of η for the → cosmic microwave background radiation (CMBR) has been very well determined by the → WMAP satellite to be η = (6.14 ± 0.25) x 10-10. The baryon number is assumed to be constant. The photons created in stars amount to only a small fraction, less than 1%, of those in the CMBR.
2) A property of an → elementary particle represented by a → quantum number. It is equal to +1 for a baryon and -1 for an antibaryon. → Bosons, → leptons, and → mesons have a baryon number B = 0. → Quarks and → antiquarks have baryon numbers of B = +1/3 and -1/3, respectively. The baryon number is → conserved in all observed types of particle-particle interaction.

baryon; → number.

baryon-photon ratio
  وابر ِ باریون-فوتون   
vâbar-e bâriyon-foton

Fr.: rapport baryon-photon   

The → baryon number compared with the number of photons in the → Universe. The baryon-photon ratio can be estimated in a simple way. The → energy density associated with → blackbody radiation of → temperature  T is aT4, and the mean energy per photon is ~kT. Therefore, the number density of blackbody photons for T = 2.7 K is: nγ = aT4/kT = 3.7 x 102 photons cm-3, where a = 7.6 x 10-15 erg cm-3 K-4 (→ radiation density constant) and k = 1.38 x 10-16 erg K-1 (→ Boltzmann's constant). The number density of baryons can be expressed by ρm/mp, where ρm is the mass density of the Universe and mp is the mass of the → proton (1.66 x 10-24 g). → CMB measurements show that the baryonic mean density is ρm = 4.2 x 10-31 g cm-3 (roughly 5% of the → critical density). This leads to the value of ~ 2 x 10-7 for the number density of baryons. Thus, the baryon/photon ratio is approximately equal to η = nb/nγ = 2 x 10-7/3.7 x 102 ~ 5 x 10-10. In other words, for each baryon in the Universe there is 1010 photons. This estimate is in agreement with the precise value of the baryon-photon ratio 6.14 x 10-10 derived with the → WMAP. Since the photon number and the baryon number are conserved, the baryon-photon ratio stays constant as the Universe expands.

baryon; → photon; → ratio.

baryonic dark matter
  ماده‌ی ِ سیاه ِ باریونی   
mâde-ye siyâh-e bâriyoni

Fr.: matière noire baryonique   

Dark matter made up of → baryons that are not luminous enough to produce any detectable radiation. It is generally believed that most dark matter is → non-baryonic. The baryonic dark matter could reside in a number of forms, including cold gas and compact objects.

baryonic; → dark; → matter.

baryonic matter
  ماده‌ی ِ باریونی   
mâde-ye bâriyoni (#)

Fr.: matière baryonique   

Ordinary matter composed of → baryons, i.e. → protons and → neutrons, as distinct from → non-baryonic, exotic forms.

Adj. of → baryon; → matter.

  ۱، ۲، ۳، ۴) پایه، ۵) پایگاه، ۶) باز   
1, 2, 3, 4) pâyé (#), 5) pâygâh (#), 6) bâz (#)

Fr.: base   

1) The bottom support of anything; a fundamental principle or groundwork.
2) Geometry: The line or surface on which a figure is assumed to stand.
3) Arithmetic: The number which, raised to various powers, forms the main counting units of a system. Thus 10 is the base of the decimal system.
4) Logarithm: The number a in the equation N = ax. The base of common logarithm is 10.
5) A centre of operations or supply, such as a → database.
6) Chemistry: A substance that reacts with an acid to yield a salt and water.

M.E., from O.Fr. bas, from L. basis "foundation," from Gk. basis "step, pedestal," from bainein "to step."

Pâyé "base," from pâ, pây "foot," "from Mid.Pers. pâd, pây; Av. pad-, cf. Skt. pat: Gk. pos, genitive podos; L. pes; PIE *pod-/*ped-.
Pâygâh, from pâyé + gâh "place" (O.Pers. gāθu-; Av. gātav-, gātu- "place, throne, spot;" cf. Skt. gâtu- "going, motion; free space for moving; place of abode;" PIE *gwem- "to go, come).
Bâz, loan from Fr., as above.


Fr.: ligne de base   

1) In radio interferometry, the separation between the electrical, or phase centers of two interferometer elements.
2) In spectroscopy, the contribution to a spectrum from phenomena that are not of astronomical interest, such as frequency dependent properties of the receivers, or by astronomical sources other than those under study.

base; → line.

bâzi (#)

Fr.: basique   

Chemistry: Of or denoting or of the nature of or containing a → base. Same as → alkaline.

base; → -ic.

howzé (#)

Fr.: bassin   

A large impact crater on a planet or moon, typically several hundred kilometers across, flooded with basaltic lava and surrounded by concentric rings of faulted cliffs.

From O.Fr. bacin, from V.L. *baccinum, from L. bacca "water vessel," perhaps originally Gaulish.

Howzé, from howz "pond, a large reservoir of water" (from Ar. hauz) + noun suffix.

bâtri (#)

Fr.: batterie   

A combination of → cells connected together so as to produce useful electrical energy.

M.Fr. batterie "a grouping of artillery pieces for tactical purposes," from O.Fr. baterie "beatng, thrashing, assault," from battre "to beat," from L. battuere "to beat."

Bâtri, loanword from Fr., as above.


Fr.: baie   

A body of water forming an indentation of the shoreline, larger than a cove but smaller than a → gulf (

M.E. baye, from M.Fr. baie, from L.L. bâia, perhaps ultimately from Iberian bahia.

Bâhé, loan from Sp. bahia.

Bayer designation
  نامگزینی ِ بایر   
nâmgozini-ye bayer

Fr.: designation de Bayer   

A stellar designation system in which a specific star is identified by a Greek letter, followed by the genitive form of its hosting → constellation's Latin name. For example, Alpha Eridani, Delta Cephei, Lambda Bootis. The Greek alphabet has only 24 letters. In case a single constellation contained a larger number of stars, Bayer amended with Latin letters: upper case A, followed by lower case b through z (omitting j and v), for a total of another 24 letters. Bayer did not go beyond z, but later astronomers added more designations using both upper and lower case Latin letters, the upper case letters following the lower case ones in general. Examples include, for Vela: a Vel (Velorum), z Vel, A Vel, Q Vel; for Scorpius: d Sco (Scorpii), A Sco; for Leo: b Leo (Leonis), o Leo, A Leo, → c Orionis. Compare with the → Flamsteed designation.

First introduced by Johann Bayer (1572-1625) in his atlas Uranometria, published in 1603 at Augsburg, Germany; → designation.

Bayes' theorem
  فربین ِ بیز   
farbin-e Bayes

Fr.: théorème de Bayes   

A theorem in probability theory concerned with determining the → conditional probability of an event when another event has occurred. Bayes' theorem allows revision of the original probability with new information. Its simplest form is: P(A|B) = P(B|A) P(A)/P(B), where P(A): independent probability of A, also called prior probability; P(B): independent probability of B; P(B|A): conditional probability of B given A has occurred; P(A|B): conditional probability of A given B has occurred, also called posterior probability. Same as Bayes' rule.

Named after its proponent, the British mathematician Reverend Thomas Bayes (1702-1761). However, Bayes did not publish the theorem during his lifetime; instead, it was presented two years after his death to the Royal Society of London.

Bayesian model
  مدل ِ بیزی   
model-e Bayesi

Fr.: modèle bayésien   

A mathematical framework described by the prior distribution of a random parameter and by the likelihood of the observations. In this framework, all information on the random parameter based on the observations is included in the posterior distribution which can be obtained using → Bayes' theorem (see, e.g., Andrieu et al., 2001, "An Introduction to Monte Carlo Methods for Bayesian Data Analysis," in Nonlinear Dynamics and Statistics, ed. A. I. Mees, Boston: Birkhäuser).

Bayes' theorem; → model.

Bayesian model averaging (BMA)
  میانگین-گیری ِ بیزی ِمدل   
miyângin-giri-ye Bayesi-e model


An approach to model selection in which one bases inference on an average of all possible models instead of a single best model. The BMA is largely used in various branches of knowledge to properly account for model uncertainty in performing predictions.

Bayesian, after Thomas Bayes (1702-1761), → Bayes's theorem; → model; → average.

Be phenomenon
  پدیده‌ی ِ Be   
padide-ye Be

Fr.: phénomène Be   

The episodic occurrence of abrupt → mass loss in → Be stars resulting in → Balmer lines in emission and → infrared excess. The Be phenomenon results from a combination of a long-term secular effect and short-term instabilities, such as pulsation. The secular evolution brings the star close enough to the critical → break-up velocity, so that the additional velocity field due to the instability may allow some mass ejection (Maeder 2011).

Be star; → phenomenon.

<< < B r bac Bal Bar Bar Be Bee Bes bia big bin bin bip BL Bla bli blu Boh Bon bot bow bre bri bro bur > >>