<< < -es -iv -ti 21 a p abe abs abs aca acc acc acr act ada adh Adr aer AGB air Alf Alg all alp alt AM amo ana And ang ani ano Ant Ant apa apo app app Ara Arc ari Arr ash ass ast ast asy atm ato att aut ave axi Bab bal Bal bar bar bea Bek Bes bia Big bin bin bip biv bla bli blu Boh Bol Bos bou bra bri bro buo cal cal can cap car Car cat cat CCD Cen cen CH cha cha che Che chr cir cir cit cla clo clo clu Coa coe coh col col col com com com com com com com com Com con con con con con con con con con con con con Cop Cor cor cor cos cos cou cou Cow cre cri cro cry cur cya Cyg dan dar dat de- deb dec dec ded def deg del dem den dep des det dev dia dif dif dih dio Dir dis dis dis dis dis dis DO don dou dow dro dur dwa dyn Dys ear ebb ecl edg egg Ein Ela ele ele ele ele ell eme emp enc eng ent epi equ equ equ esc eth Eur Eve exa exc exe exi exp exp ext ext ext fac fal far fed Fer fer fie fin fir fis fla flo flu fol for for fou fra fre Fre fro fut G-t gal gal gam gas Gau Gem gen geo geo geo gia Gli Gol gra gra gra gra gre gri gui H I Hag hal har hat He- hea hel Hel her Hes hie hig his hom hor hot Hub Hug hur hyd hyd hyg hyp ice ide ima Ima imp imp inc inc ind ine inf inf inf ing inn ins ins int int int int int int int int inv Io ion iro isl iso iso Jac jet jud jur Kel Kep kil Klo Kui Lag lam Lap Lar lat law lea len lep Lib lig lim lin lin Lio lit loc LOF lon Lor low lum lun Lup Lyo mac mag mag mag mag mag mai man Mar mas mas mat Max mea mec Meg Mer Mer met met Met mic Mid Mil min Mir mit mod mod mol mon Mor mou mul mul mys nan Nat nau nec neo neu nev New NGC no nom non non nor not nuc nuc num nut obj obs obs occ ocu oft ome Oor ope opp opt opt orb ord ori ort osc out ove oxi pai pan par par par par pas pea pen per per per per Per per pha phi pho pho pho phy pio Pla pla pla pla Pla plu Poi pol pol pol poo pos pos pot pra pre pre pre pre pri pri pro pro pro pro pro Pro pro pse pul pur qua qua qua qua que rac rad rad rad rad rad rad ran rar ray rea rea rec rec red red ref ref reg rel rel rel ren res res res res ret rev Ric rig rin roc roo rot rot Rus Sac sal sat sca sca Sch sci Scu sec sec Sed sel Sel sen ser Sex Sha she sho sid sig sil sim sin siz sla Sma sno sof sol sol sol sol sou sou spa spa spe spe spe sph spi spi spr squ sta sta sta sta ste ste ste Sto Str str str sub sub suc sun sup sup sup sup sur swa syn syn tab tar tek tem ter tes the the the the Tho thr tid tim Tis Too Tor tra tra Tra tra tra tri tri tru Tul tur two Typ ult un- und uni uni unk upp Urc utt val var vec vel ver vib vio vir vis voi vor wan wat wav wax wea Wei whi Wil win WN9 wor X-r yel you zer zod > >>
egg toxm, xâg Fr.: œuf 1) An oval or round object laid by a female bird, reptile, fish,
or invertebrate, usually containing a developing embryo.
The eggs of birds are enclosed in a chalky shell, while those
of reptiles are in a leathery membrane. M.E., from Old Norse egg, cognate with O.Saxon, M.Du., Du., O.H.G., Ger. Ei, probably from PIE *owyo-/*oyyo- "egg;" source of Pers. xâg, as below. Toxm, → seed. |
egress osgâm Fr.: émersion The reappearance of a celestial body after an eclipse, an occultation, or a transit; same as emersion. → ingress. From L. egressus, from egredi "to go out," from → ex- "out" + -gredi, comb. form of gradi "to walk, go, step;" from PIE *ghredh- (cf. Lith. gridiju "to go, wander," O.C.S. gredo "to come"). Osgâm "going out," from os- "out," → ex-, + gâm "step, pace," Mid.Pers. gâm, O.Pers. gam- "to come; to go," Av. gam- "to come; to go," jamaiti "goes," Mod.Pers. âmadan "to come," Skt. gamati "goes," Gk. bainein "to go, walk, step," L. venire "to come," Tocharian A käm- "to come," O.H.G. queman "to come," E. come; PIE root *gwem- "to go, come." |
EHB star setâre-ye EHB Fr.: étoile EBH Same as → extreme horizontal branch star. |
eigenfunction viž-karyâ Fr.: fonction propre 1) Math.: An → eigenvector for a linear
→ operator on a → vector space
whose vectors are → functions. Also known as
proper function. From Ger. Eigenfunktion, from eigen- "characteristic, particular, own" (from P.Gmc. *aigana- "possessed, owned," Du. eigen, O.E. agen "one's own") + → function. Viž-karyâ, from viž, contraction of vižé "particular, charcteristic" + karyâ, → function. Vižé, from Mid.Pers. apēcak "pure, sacred," from *apa-vēcak "set apart," from prefix apa- + vēcak, from vēxtan (Mod.Pers. bixtan) "to detach, separate, sift, remove," Av. vaēk- "to select, sort out, sift," pr. vaēca-, Skt. vic-, vinakti "to sift, winnow, separate; to inquire." |
eigenstate viž-hâlat Fr.: état propre Quantum mechanics: A dynamical state whose state vector (or wave function) is an → eigenvector of an → operator corresponding to a specified physical quantity. → eigenfunction; → state. |
eigenvalue viž-arzé Fr.: valeur propre 1) Math.: The one of the → scalars λ such
that T(v) = λv, where T is a linear → operator
on a → vector space, and v is an
→ eigenvector. → eigenfunction; → value. |
eigenvector viž-bordâr Fr.: vecteur propre Math.: A nonzero vector v whose direction is not changed by a given linear transformation T; that is, T(v) = λ v for some scalar λ. → eigenfunction; → vector. |
eight hašt (#) Fr.: huit A → cardinal number between → seven and → nine. M.E. eighte, from O.E. eahta, æhta, related to O.Norse atta, Swed. åtta, Du. acht, O.H.G. Ahto, Ger. acht; Pars. hašt, as below, from PIE *okto(u) "eight." Hašt, from Mid.Pers. hašt; Av. ašta; cognate with Skt. asta; Gk. okto; L. octo (from which It. otto, Sp. ocho, Fr. huit). |
einstein einstein (#) Fr.: einstein A unit of radiation energy sometimes used in the investigation of photochemical processes. The unit is defined as NAhν, where NA is → Avogadro's number and hν is the energy of a → quantum of the radiation. One einstein (or Einstein unit) is the energy per → mole of photons carried by a beam of monochromatic light. Named for Albert Einstein (1879-1955). |
Einstein coefficient hamgar-e Einstein Fr.: coefficient d'Einstein A measure of the probability that a particular atomic transition leading to the formation of an atomic spectral line occurs. The coefficient of spontaneous emission is denoted by Aij, and the coefficient of stimulated emission by Bij, i representing the lower level and j is the upper level. Named after Albert Einstein (1879-1955) who introduced the coefficients in 1916; → coefficient. |
Einstein cross calipâ-ye Einstein Fr.: croix d'Einstein An image of a distant quasar (redshift 1.7) formed by a foreground spiral galaxy (redshift 0.039) through gravitational lensing. The image of the quasar is split into four point sources forming a cross at the center of the galaxy. |
Einstein equivalence principle parvaz-e hamug-arzi-ye Einstein Fr.: principe d'équivalence d'Einstein The → equivalence principle as stated by Einstein, on which is
based the theory of → general relativity. It comprises
the three following items: → Einstein; → equivalence; → principle. |
Einstein model model-e Einstein Fr.: modèle d'Einstein A model for the → specific heat of solids in which the specific heat is due to the vibrations of the atoms of the solids. The vibration energy is → quantized and the atoms have a single frequency, ν. Put forward in 1907 by Einstein, this model was the first application of → quantum theory to the solid state physics. The expression for the specific heat is given by: CV = 3Rx2ex/(ex -1)2, where R is the → gas constant, x = TE/T, TE = hν/k, h is → Planck's constant, and k is → Boltzmann's constant. TE is called the → Einstein temperature. This model could explain the temperature behavior of specific heat but not very satisfactorily at low temperatures. It has therefore been superseded by the → Debye model. See also → Dulong-Petit law. Albert Einstein in 1907; → model. |
Einstein notation namâdgân-e Einstein Fr.: convention Einstein A notation convention in → tensor analysis whereby whenever there is an expression with a repeated → index, the summation is done over that index from 1 to 3 (or from 1 to n, where n is the space dimension). For example, the dot product of vectors a and b is usually written as: a.b = Σ (i = 1 to 3) ai.bi. In the Einstein notation this is simply written as a.b = ai.bi. This notation makes operations much easier. Same as Einstein summation convention. |
Einstein radius šo'â'-e Einstein Fr.: rayon d'Einstein In gravitational lens phenomenon, the critical distance from the → lensing object for which the light ray from the source is deflected to the observer, provided that the source, the lens, and the observer are exactly aligned. Consider a massive object (the lens) situated exactly on the line of sight from Earth to a background source. The light rays from the source passing the lens at different distances are bent toward the lens. Since the bending angle for a light ray increases with decreasing distance from the lens, there is a critical distance such that the ray will be deflected just enough to hit the Earth. This distance is called the Einstein radius. By rotational symmetry about the Earth-source axis, an observer on Earth with perfect resolution would see the source lensed into an annulus, called Einstein ring, centered on its position. The size of an Einstein ring is given by the Einstein radius: θE = (4GM/c2)0.5 (dLS/(dL.dS)0.5, where G is the → gravitational constant, M is the mass of the lens, c is the → speed of light, dL is the angular diameter distance to the lens, dS is the angular diameter distance to the source, and dLS is the angular diameter distance between the lens and the source. The equation can be simplified to: θE = (0''.9) (M/1011Msun)0.5 (D/Gpc)-0.5. Hence, for a dense cluster with mass M ~ 10 × 1015 Msun at a distance of 1 Gigaparsec (1 Gpc) this radius is about 100 arcsec. For a gravitational → microlensing event (with masses of order 1 Msun) at galactic distances (say D ~ 3 kpc), the typical Einstein radius would be of order milli-arcseconds. |
Einstein ring halqe-ye Einstein Fr.: anneau d'Einstein The apparent shape of a background source unsergoing the effect of → gravitational lensing as seen from Earth, provided that the source, the intervening lens, and the observer are in perfect alignement through → Einstein radius. |
Einstein solid model-e Einstein Fr.: modèle d'Einstein Same as → Einstein model. |
Einstein static Universe giti-ye istâ-ye Einstein Fr.: Univers stationnaire d'Einstein A cosmological model in which a static (neither expanding nor collapsing) Universe is maintained by introducing a cosmological repulsion force (in the form of the cosmological constant) to counterbalance the gravitational force. |
Einstein temperature damâ-ye Einstein (#) Fr.: température d'Einstein A characteristic parameter occurring in the → Einstein model of → specific heats. → Einstein; → temperature. |
Einstein tensor tânsor-e Einstein (#) Fr.: tenseur d'Einstein A mathematical entity describing the → curvature of → space-time in → Einstein's field equations, according to the theory of → general relativity. It is expressed by Gμν = Rμν - (1/2) gμνR, where Rμν is the Ricci tensor, gμν is the → metric tensor, and R the scalar curvature. This tensor is both symmetric and divergence free. Named after Albert Einstein (1879-1955); → tensor. |
<< < -es -iv -ti 21 a p abe abs abs aca acc acc acr act ada adh Adr aer AGB air Alf Alg all alp alt AM amo ana And ang ani ano Ant Ant apa apo app app Ara Arc ari Arr ash ass ast ast asy atm ato att aut ave axi Bab bal Bal bar bar bea Bek Bes bia Big bin bin bip biv bla bli blu Boh Bol Bos bou bra bri bro buo cal cal can cap car Car cat cat CCD Cen cen CH cha cha che Che chr cir cir cit cla clo clo clu Coa coe coh col col col com com com com com com com com Com con con con con con con con con con con con con Cop Cor cor cor cos cos cou cou Cow cre cri cro cry cur cya Cyg dan dar dat de- deb dec dec ded def deg del dem den dep des det dev dia dif dif dih dio Dir dis dis dis dis dis dis DO don dou dow dro dur dwa dyn Dys ear ebb ecl edg egg Ein Ela ele ele ele ele ell eme emp enc eng ent epi equ equ equ esc eth Eur Eve exa exc exe exi exp exp ext ext ext fac fal far fed Fer fer fie fin fir fis fla flo flu fol for for fou fra fre Fre fro fut G-t gal gal gam gas Gau Gem gen geo geo geo gia Gli Gol gra gra gra gra gre gri gui H I Hag hal har hat He- hea hel Hel her Hes hie hig his hom hor hot Hub Hug hur hyd hyd hyg hyp ice ide ima Ima imp imp inc inc ind ine inf inf inf ing inn ins ins int int int int int int int int inv Io ion iro isl iso iso Jac jet jud jur Kel Kep kil Klo Kui Lag lam Lap Lar lat law lea len lep Lib lig lim lin lin Lio lit loc LOF lon Lor low lum lun Lup Lyo mac mag mag mag mag mag mai man Mar mas mas mat Max mea mec Meg Mer Mer met met Met mic Mid Mil min Mir mit mod mod mol mon Mor mou mul mul mys nan Nat nau nec neo neu nev New NGC no nom non non nor not nuc nuc num nut obj obs obs occ ocu oft ome Oor ope opp opt opt orb ord ori ort osc out ove oxi pai pan par par par par pas pea pen per per per per Per per pha phi pho pho pho phy pio Pla pla pla pla Pla plu Poi pol pol pol poo pos pos pot pra pre pre pre pre pri pri pro pro pro pro pro Pro pro pse pul pur qua qua qua qua que rac rad rad rad rad rad rad ran rar ray rea rea rec rec red red ref ref reg rel rel rel ren res res res res ret rev Ric rig rin roc roo rot rot Rus Sac sal sat sca sca Sch sci Scu sec sec Sed sel Sel sen ser Sex Sha she sho sid sig sil sim sin siz sla Sma sno sof sol sol sol sol sou sou spa spa spe spe spe sph spi spi spr squ sta sta sta sta ste ste ste Sto Str str str sub sub suc sun sup sup sup sup sur swa syn syn tab tar tek tem ter tes the the the the Tho thr tid tim Tis Too Tor tra tra Tra tra tra tri tri tru Tul tur two Typ ult un- und uni uni unk upp Urc utt val var vec vel ver vib vio vir vis voi vor wan wat wav wax wea Wei whi Wil win WN9 wor X-r yel you zer zod > >>