<< < -es -iv -ti 21 a p abe abs abs aca acc acc acr act ada adh Adr aer AGB air Alf Alg all alp alt AM amo ana And ang ani ano Ant Ant apa apo app app Ara Arc ari Arr ash ass ast ast asy atm ato att aut ave axi Bab bal Bal bar bar bea Bek Bes bia Big bin bin bip biv bla bli blu Boh Bol Bos bou bra bri bro buo cal cal can cap car Car cat cat CCD Cen cen CH cha cha che Che chr cir cir cit cla clo clo clu Coa coe coh col col col com com com com com com com com Com con con con con con con con con con con con con Cop Cor cor cor cos cos cou cou Cow cre cri cro cry cur cya Cyg dan dar dat de- deb dec dec ded def deg del dem den dep des det dev dia dif dif dih dio Dir dis dis dis dis dis dis DO don dou dow dro dur dwa dyn Dys ear ebb ecl edg egg Ein Ela ele ele ele ele ell eme emp enc eng ent epi equ equ equ esc eth Eur Eve exa exc exe exi exp exp ext ext ext fac fal far fed Fer fer fie fin fir fis fla flo flu fol for for fou fra fre Fre fro fut G-t gal gal gam gas Gau Gem gen geo geo geo gia Gli Gol gra gra gra gra gre gri gui H I Hag hal har hat He- hea hel Hel her Hes hie hig his hom hor hot Hub Hug hur hyd hyd hyg hyp ice ide ima Ima imp imp inc inc ind ine inf inf inf ing inn ins ins int int int int int int int int inv Io ion iro isl iso iso Jac jet jud jur Kel Kep kil Klo Kui Lag lam Lap Lar lat law lea len lep Lib lig lim lin lin Lio lit loc LOF lon Lor low lum lun Lup Lyo mac mag mag mag mag mag mai man Mar mas mas mat Max mea mec Meg Mer Mer met met Met mic Mid Mil min Mir mit mod mod mol mon Mor mou mul mul mys nan Nat nau nec neo neu nev New NGC no nom non non nor not nuc nuc num nut obj obs obs occ ocu oft ome Oor ope opp opt opt orb ord ori ort osc out ove oxi pai pan par par par par pas pea pen per per per per Per per pha phi pho pho pho phy pio Pla pla pla pla Pla plu Poi pol pol pol poo pos pos pot pra pre pre pre pre pri pri pro pro pro pro pro Pro pro pse pul pur qua qua qua qua que rac rad rad rad rad rad rad ran rar ray rea rea rec rec red red ref ref reg rel rel rel ren res res res res ret rev Ric rig rin roc roo rot rot Rus Sac sal sat sca sca Sch sci Scu sec sec Sed sel Sel sen ser Sex Sha she sho sid sig sil sim sin siz sla Sma sno sof sol sol sol sol sou sou spa spa spe spe spe sph spi spi spr squ sta sta sta sta ste ste ste Sto Str str str sub sub suc sun sup sup sup sup sur swa syn syn tab tar tek tem ter tes the the the the Tho thr tid tim Tis Too Tor tra tra Tra tra tra tri tri tru Tul tur two Typ ult un- und uni uni unk upp Urc utt val var vec vel ver vib vio vir vis voi vor wan wat wav wax wea Wei whi Wil win WN9 wor X-r yel you zer zod > >>
epicyclic apicarxe-yi Fr.: épicyclique Of or pertaining to an → epicycle. |
epicyclic frequency basâmad-e apicarxe-yi Fr.: fréquence épicyclique In the → epicyclic theory of Galactic rotation, the frequency at which a star in the → Galactic disk describes an ellipse around its mean circular orbit. The epicyclic frequency relates to the → Oort's constants. In the solar neighborhood the epicyclic frequency is about 32 km s-1 kpc-1. |
epicyclic oscillation naveš-e apicarxe-yi Fr.: oscillation épicyclique In a → disk galaxy, the motion of a star about the orbital → guiding center when it is displaced radially. See also → epicyclic frequency, → epicyclic theory. → epicyclic; → oscillation. |
epicyclic theory negare-ye apicarxe-yi Fr.: théorie épicyclique The theory that describes the Galactic dynamics, that is the orbits of stars and gas clouds in the → Galactic disk, as well as the spiral → density wave. Formulated by Bertil Lindblad (1895-1965), the epicyclic theory assumes that orbits are circular with small deviations. Star orbits are described by the superposition of two motions: i) a rotation of the star (epicenter) around the Galactic center at the circular angular velocity, Ω, and ii) a retrograde elliptical motion at → epicyclic frequency, κ. The epicyclic motion in the Galactic plane occurs in a retrograde sense to conserve → angular momentum. In general Ω and κ are different and, therefore, orbits do not close. However, seen by an observer who rotates with the epicenter, orbits are closed ellipses. |
epicycloid apicarxzâd Fr.: épicycloïde A curve traced by a point of a circle that rolls on the outside of a fixed circle. This curve was described by the Gk. mathematicians and astronomer Hipparchus, who made use of it to account for the apparent movement of many of the heavenly bodies. |
Epimetheus Epimeteus Fr.: Épiméthée The fifth of → Saturn's known satellites. It has a mean radius of 55 x 69 km and orbits its planet at a mean distance of 151,422 km. It shares the same → horseshoe orbit with → Janus. Epimetheus was discovered by Richard L. Walker in 1966. Also known as Saturn XI. In Gk. mythology, brother of → Prometheus and → Atlas, and husband of → Pandora. His task was to populate the Earth with animals. |
epimorphism api-rixtmandi Fr.: épimorphisme A → morphism f : Y → X if, for any two morphisms u,v : X → Z, u f = v f implies u = v. |
episode apyâ Fr.: épisode 1) An incident in the course of a series of events. From Fr. épisode from Gk. epeisodion "addition," noun use of neuter of epeisodios "coming in besides," from → epi- "in addition" + eisodos "a coming in, entrance" (from eis"into" + hodos "way," → period). Apyâ, literally "coming in besides," from api-, → epi-, + â- present stem of âmadan "to come," → rise. |
episodic apyâyi Fr.: épisodique 1) Pertaining to or of the nature of an episode. |
epistemology šenaxtšenâsi (#) Fr.: épistémologie A branch of philosophy that investigates the possibility, origins, nature, methods, and limits of human knowledge. From Gk. episteme "knowledge," from Ionic Gk. epistasthai "to understand," literally "overstand," from → epi- "over, near" + histasthai "to stand;" cognate with Pers. istâdan "to stand," → standard; PIE base *sta- "to stand." |
epoch zime Fr.: époque 1) The date for which → orbital elements or
the positions of celestial objects are calculated. Specifying the
epoch is important because the apparent positions of objects in the
sky change gradually due to → precession and
→ nutation, while orbital elements change due
to the gravitational effects of the → planets.
The → standard epoch used in ephemerides
(→ ephemeris) and stellar catalogues at present
is January 1, 2000, 12h (written also as 2000.0).
See also: → Julian epoch. From M.L. epocha, from Gk. epokhe "pause, cessation, fixed point," from epekhein "to pause, take up a position," from epi- "on" + ekhein "to hold, to have;" cf. Av. hazah- "power, violence, superiority;" Skt. sahate "he masters," sáhas- "power, violence, might;" Goth. sigis; O.H.G. sigu; O.E. sige "victory;" PIE base *segh- "to hold." Zime, from Mid.Pers. zim "time, year, winter," from Av. zyam-, zayan- "winter," probably related to zaman "time" + nuance suffix -é. |
epoch angle zâviye-ye zimé Fr.: angle de phase initial Same as the → initial phase angle. |
epoch of reionization (EoR) zime-ye bâzyoneš Fr.: époque de réionisation → epoch; → reionization. |
epoch of thermalization zime-ye yekgarmâyi Fr.: époque de thermalisation The period during the → early Universe before the → recombination era when the photons were hot enough to ionize hydrogen. The density was so high that the interactions between → matter and → radiation were very numerous. Therefore, matter and photons were in constant contact and their → temperatures were the same. As a result, the radiation became → thermalized, i.e. the → electromagnetic spectrum of the radiation became that of a → blackbody, a process called → thermalization. Since the time of recombination the photons of → cosmic background radiation have been free to travel uninhibited by interactions with matter. Thus, their distribution of energy is a perfect → blackbody curve, as predicted by the → Big Bang theory and shown by several observations, such as → Cosmic Background Explorer (COBE), → Wilkinson Microwave Anisotropy Probe (WMAP), and → Planck Satellite. → epoch; → thermalization. |
EPR paradox pârâdaxš-e EPR Fr.: paradoxe EPR A thought experiment developed in 1935 by A. Einstein (1879-1955), Boris Podolsky (1896-1966), and Nathan Rosen (1909-1995) to demonstrate that there is a fundamental inconsistency in → quantum mechanics. They imagined two physical systems that are allowed to interact initially so that they will subsequently be defined by a single quantum mechanical state. For example, a neutral → pion at rest which decays into a pair of → photons. The pair of photons is described by a single two-particle → wave function. Once separated, the two photons are still described by the same wave function, and a measurement of one → observable of the first system will determine the measurement of the corresponding observable of the second system. For example, if photon 1 is found to have → spin up along the x-axis, then photon 2 must have spin down along the x-axis, since the final total → angular momentum of the two-photon system must be the same as the angular momentum of the initial state. This means that we know the spin of photon 2 even without measuring it. Likewise, the measurement of another observable of the first system will determine the measurement of the corresponding observable of the second system, even though the systems are no longer physically linked in the traditional sense of local coupling (→ quantum entanglement). So, EPR argued that quantum mechanics was not a complete theory, but it could be corrected by postulating the existence of → hidden variables that furthermore would be "local". According to EPR, the specification of these local hidden parameters would predetermine the result of measuring any observable of the physical system. However, in 1964 John S. Bell developed a theorem, → Bell's inequality, to test for the existence of these hidden variables. He showed that if the inequality was satisfied, then no local hidden variable theory can reproduce the predictions of quantum mechanics. → Aspect experiment. A. Einstein, B. Podolsky, N. Rosen: "Can quantum-mechanical description of physical reality be considered complete?" Phys. Rev. 41, 777 (15 May 1935); → paradox. |
equal hamug, barâbar (#) Fr.: égale As great as; like or alike in quantity, degree, value. From L. æqualis "uniform, identical, equal," from æquus "level, even, just," of unknown origin, + -alis, → -al. Hamug, from Mid.Pers. hamôg "equal, like," from ham "the same; together; also" (O.Pers./Av. ham-; cf. Skt. sam-; also O.Pers./Av. hama- "one and the same;" Skt. sama-; Gk. homos-; originally identical with PIE numeral *sam- "one," from *som-) + suffix -og/-ok/-uk, as in nêrog "force" (from nar "man, male"), nêvakôk "good, nice" (from nêvak "good, beautiful, nice, favorable"), mastôk "drunk" (from mast "drunk, drunken"), câpuk "quick; active," sapuk "light, brisk." |
equality hamugi Fr.: égalité 1) The state or quality of being equal. M.E. from L. aequalitat-, stem of aequalitats, → equal + -ity. Hamugi noun of hamug, → equal. |
equality sign nešâne-ye hamugi Fr.: signe d'égalité Same as → equals sign. |
equalization hamugsâzi Fr.: égalisation; équalisation The act of making equal or uniform. Noun of equalize. |
equalize hamug sâxtan Fr.: égaliser; équaliser To make equal; to make uniform. From hamug, → equal + sâz contraction of sâzandé "doer, maker," from sâxtan, sâzidan "to make, form, fashion, prepare" (Mid.Pers. sâxtan, sâz- "to form, prepare, build, make;" Proto-Iranian *sac- "to fit, be suitable; to prepare"). |
<< < -es -iv -ti 21 a p abe abs abs aca acc acc acr act ada adh Adr aer AGB air Alf Alg all alp alt AM amo ana And ang ani ano Ant Ant apa apo app app Ara Arc ari Arr ash ass ast ast asy atm ato att aut ave axi Bab bal Bal bar bar bea Bek Bes bia Big bin bin bip biv bla bli blu Boh Bol Bos bou bra bri bro buo cal cal can cap car Car cat cat CCD Cen cen CH cha cha che Che chr cir cir cit cla clo clo clu Coa coe coh col col col com com com com com com com com Com con con con con con con con con con con con con Cop Cor cor cor cos cos cou cou Cow cre cri cro cry cur cya Cyg dan dar dat de- deb dec dec ded def deg del dem den dep des det dev dia dif dif dih dio Dir dis dis dis dis dis dis DO don dou dow dro dur dwa dyn Dys ear ebb ecl edg egg Ein Ela ele ele ele ele ell eme emp enc eng ent epi equ equ equ esc eth Eur Eve exa exc exe exi exp exp ext ext ext fac fal far fed Fer fer fie fin fir fis fla flo flu fol for for fou fra fre Fre fro fut G-t gal gal gam gas Gau Gem gen geo geo geo gia Gli Gol gra gra gra gra gre gri gui H I Hag hal har hat He- hea hel Hel her Hes hie hig his hom hor hot Hub Hug hur hyd hyd hyg hyp ice ide ima Ima imp imp inc inc ind ine inf inf inf ing inn ins ins int int int int int int int int inv Io ion iro isl iso iso Jac jet jud jur Kel Kep kil Klo Kui Lag lam Lap Lar lat law lea len lep Lib lig lim lin lin Lio lit loc LOF lon Lor low lum lun Lup Lyo mac mag mag mag mag mag mai man Mar mas mas mat Max mea mec Meg Mer Mer met met Met mic Mid Mil min Mir mit mod mod mol mon Mor mou mul mul mys nan Nat nau nec neo neu nev New NGC no nom non non nor not nuc nuc num nut obj obs obs occ ocu oft ome Oor ope opp opt opt orb ord ori ort osc out ove oxi pai pan par par par par pas pea pen per per per per Per per pha phi pho pho pho phy pio Pla pla pla pla Pla plu Poi pol pol pol poo pos pos pot pra pre pre pre pre pri pri pro pro pro pro pro Pro pro pse pul pur qua qua qua qua que rac rad rad rad rad rad rad ran rar ray rea rea rec rec red red ref ref reg rel rel rel ren res res res res ret rev Ric rig rin roc roo rot rot Rus Sac sal sat sca sca Sch sci Scu sec sec Sed sel Sel sen ser Sex Sha she sho sid sig sil sim sin siz sla Sma sno sof sol sol sol sol sou sou spa spa spe spe spe sph spi spi spr squ sta sta sta sta ste ste ste Sto Str str str sub sub suc sun sup sup sup sup sur swa syn syn tab tar tek tem ter tes the the the the Tho thr tid tim Tis Too Tor tra tra Tra tra tra tri tri tru Tul tur two Typ ult un- und uni uni unk upp Urc utt val var vec vel ver vib vio vir vis voi vor wan wat wav wax wea Wei whi Wil win WN9 wor X-r yel you zer zod > >>