An Etymological Dictionary of Astronomy and Astrophysics
English-French-Persian

فرهنگ ریشه شناختی اخترشناسی-اخترفیزیک

M. Heydari-Malayeri    -    Paris Observatory

   Homepage   
   


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

<< < -es -iv -ti 21- A r abe abs abs acc acc acc act act ada adi adu aff age alc Alf ali all alp alt ama amp ana ang ang ann ano ant ant ape apo app aps arc Arg ari art ass ast ast ast atm ato att aur aut axi B r bac Bal Bar Bar Bay bec Ber Bet Bie bij bin bio bis bla bla blu blu bol Bor bou Bra bre bro Bug C-s cal Cam can car Car Cas cat cav cel cen cer Cha cha cha che cho cir cir cir cla clo clo clu coa coe coh col col col com com com com com com com com com con con con con con con con con con con con coo cor cor cor cos cos cos Cou cou Cra Cre cri cro cub cur cyc cyl dar dat daw de- Deb dec dec dee def deg del Den dep der det deu dew dic dif dif dil dip dir dis dis dis dis dis div dog Dop dou dra dua dus dwa dyn e-m ear ecl eco eff ein Ein elb ele ele ele ele Els emi emp ene enr env epi equ equ Eri est Euc eva evo exc exc exh exo exp exp ext ext f-n Fah fam fau fee Fer fib fil fin fir fix fle flu foc for for for fra fre fre fri fun fuz gal gal gal Gan gau GCN gen geo geo geo geo Gl glo gra gra gra gra gra gre gro GW1 hab hal han HAR haz hea hel hel Hen Her heu Hig Hil hol hop hor hou Hub Hum Hyd hyd hyd hyp hys ide ign ima imp imp inc inc ind ine inf inf inf inh INP ins ins int int int int Int int int int inv ion iri irr iso iso iso Jea Jos Jun K2 Kep key kin Kol lag lam Lan lar las lav lea leg len lev lig lim lin lin lin lis lob loc log lor low lum lun lun Lym Mac mag mag mag mag mag mai Mal mar mas mas mat max mea mea mee Men mer met met met mic mid Mil min Mir mix mod mod mol mon Mor mou mul muo mys nan nat nav nec Nep neu New New NGC nob nom non non nor not nuc nuc num Nyq obj obs obs oce oen OH omn opa ope opt opt opt orb ord Ori ort osc out ove oxy pal pan par Par par par pas pea Pen per per per per per pet pha pho pho pho phy pie Pit Pla pla pla pla ple Poi pol pol pol pol pop pos pos pow pre pre pre Pre pri pri pri pro pro pro pro pro pro Pro pub pul pyr qua qua qua qua Qui rad rad rad rad rad rad ram ran rat rea rec rec rec red ref ref reg reg rel rel rem rep res res res ret rev rho Rie rim riv rol Ros rot rul S a Sah san Sat sca Sch Sch scr sec sec sec sei sel sem sep set sha she sho sid sig sil sim sin sit sky slu sno sof sol sol sol sol sou sou spa spa spe spe spe sph spi spl spr sta sta sta sta sta ste ste sti sto str str sub sub sub sug sun sup sup sup sup sur syl syn sys tal Tay tel ten ter tex the the the thi tho thu tid tim tod top tot tra tra tra tra tri tri tro tru tur twi Typ UFO ult unc uni uni uni upg ura uti val var vec vel ver ver vig vir vis voc von wak Was wav wax wea wei whi Wie win WN6 wom X-r yel you zer zod > >>

Number of Results: 12948 Search : far
cooling
  ۱) سردش؛ ۲) سردکننده، سردگر   
1) sardeš; 2) sardkonandé, sardgar

Fr.: 1) refroidissement; 2) refroidissant   

1) The process of losing heat; a falling temperature.
2) The participial adjective of to cool.

cool; → -ing.

cooling flow
  تچان ِ سردش   
tacân-e sardeš

Fr.: flot de refroidissement   

A phenomenon observed in a → cluster of galaxies, whereby the cluster core loses energy via X-ray radiation because of the collisions between the gas particles. The radiation rate is proportional to the square of the density, and the → cooling time, which remains in the outer parts too large, becomes smaller than the → Hubble time in the core. As a result, the central regions of clusters of galaxies cool down; and since in the center of a cluster gas pressure and gravitational attraction are in equilibrium, the gas density has to rise to maintain the pressure necessary for supporting the outer layers of gas. To cause its density to rise, the cooled gas has to flow inward. As the densest gas, which cools quickest, is already concentrated in the center of the cluster, the inward flow will start at the center, soon followed by the outer layers. This flow of gas is called the cooling flow. Cooling flows are moderated through feedback due to the → supermassive black hole in the nucleus of the central galaxy. The gas inflow to the center fuels the → active galactic nucleus (AGN). The latter then heats again the gas through its → radio jets.

cooling; → flow.

cooling line
  خط ِ سردکننده، ~ سردگر   
xatt-e sardkonandé, ~ sardgar

Fr.: raie de refroidissement   

The spectral → emission line through which the → colling process takes place.

cooling; → line.

cooling process
  فراروند ِ سردش   
farâravand-e sardeš

Fr.: processus de refroidissement   

The process of → radiative cooling in which the → temperature of an astrophysical system decreases due to the radiation of a major → emission line. For example, → molecular → emission at → millimeter wavelengths and → submillimeter wavelengths results in decreasing the temperature in molecular clouds. At temperatures less than 300 K, the main → coolant is the → carbon monoxide (CO) molecule which contains most of the carbon. Similarly, the → [C II] line is a major coolant in → photodissociation regions. See also → line cooling, → cooling time.

cooling; → process.

cooling time
  زمان ِ سردش   
zamân-e sardeš

Fr.: temps de refroidissement   

1) The time in which a → white dwarf cools to half its temperature. It depends on the composition, the mass, and the actual luminosity at some point in time. Cooling time is given by the relation: t = 8.8 × 106 (12/A) (M)5/7 (μ/2)-2/7 (L)-5/7 in years, where M and L are mass and luminosity in solar units, A the mean → atomic mass, and μ the → mean molecular weight (Iben & Tutukov, 1984, ApJ 282, 615). See also → Mestel theory; → white dwarf crystallization.
2) The time needed by a → plasma to radiate its thermal energy. The cooling time is directly proportional to the square root of the temperature and inversely proportional to the density. It turns out that for the → intercluster medium in a → cluster of galaxies this time is longer than the → age of the Universe. At the centers of some clusters, however, the cooling time is smaller than the age of the Universe due to the presence of a → cooling flow.

cooling; → time.

coordinate
  ۱) همارا؛ ۲) هم‌آراستن   
1) hamârâ (#); 2) hamârâstan

Fr.: 1) coordonnée; 2) coordonner   

1) Any of a series of numbers which, in relation to a given → frame of reference, locate a point in space. See also: → astronomical coordinatescanonical coordinatesCartesian coordinatescelestial coordinatescylindrical coordinatesequatorial coordinatesGalactic coordinatesgeneralized coordinatespolar coordinatesspherical coordinatesprecessed coordinatestopocentric coordinates.
2) To place in the same order or rank; to organize in a concordant operation.

From L. co- "together," → com- + orinatus, p.p. of ordinare "to put in order, arrange," from ordo "order."

Hamârâ, from ham- "together," → com- + ârâ stem of ârâstan "to arrange, to set in order, adorn," Mid.Pers. ârây-, ârâstan "to arrange, adorn," O.Pers. râs- "to be right, straight, true," râsta- "straight, true" (Mod.Pers. râst "straight, true"), râd- "to prepare," Av. râz- "to direct, put in line, set," Av. razan- "order," Gk. oregein "to stretch out," L. regere "to lead straight, guide, rule," p.p. rectus "right, straight," Skt. rji- "to make straight or right, arrange, decorate," PIE base *reg- "move in a straight line."

coordinate system
  راژمان ِ همارا   
râžmân-e hamârâ

Fr.: système de coordonnées   

Math: A system for locating each point in space by a set of numbers.
Astro: Values in a reference system used to relate the position of a body on the celestial sphere. Four main coordinate systems are utilized in astronomy: the equatorial, horizontal, ecliptic, and galactic coordinates systems.

coordinate; → system.

coordinate time
  زمان ِ همارا   
zamân-e hamârâ

Fr.: temps-coordonnée   

In relativity, the proper time in the specified reference frame. Because of time dilation, this may differ from the time experienced by any participant in the events being considered. It is the time basis (or coordinate) to be used in the theory of motions referred to this system.

coordinate; → time.

Coordinated Universal Time (UTC)
  زمان ِ جهانی ِ هم‌آراسته   
zamân-e jahâni-ye hamrârâsté

Fr.: temps universel coordonné   

An international high-precision time standard based on the Greenwich Mean Time and adjusted to compensate for divergence from atomic time. It is based on the non-uniform rotation of the Earth (UT1) and the perfectly uniform international atomic time (TAI). UTC differs from TAI by the total number of → leap seconds, so that UT1-UTC stays smaller than 0.9 sec in absolute value.

coordinate; → universal; → time.

coordination
  هم‌آرایش   
hamârâyeš

Fr.: coordination   

The act or state of coordinating or of being coordinated.

Verbal noun of → coordinate.

coordination compound
  همنات ِ هم‌آرایش   
hamnât-e hamârâyeš

Fr.: composé de coordination   

A chemical compound in which a group of atoms or ions are attached by a coordination bond to a usually metallic central atom or ion.

coordination; → compound.

coordination lattice
  جاره‌ی ِ هم‌آرایش   
jâre-ye hamârâyeš

Fr.: réseau de coordination   

Crystallography: The crystal structure of a → coordination compound.

coordination; → lattice.

coordination number
  شمار ِ هم‌آرایش   
šomêr-e hamârâyeš

Fr.: nombre de coordination   

1) Crystallography: The number of nearest neighbors of an atom or ion in a → crystal lattice. A large coordination number indicates that the structure is more closely packed.
2) Chemistry: The number of atoms, ions, or molecules surrounding a central atom or ion in a complex.

coordination; → number.

Copenhagen Interpretation
  آزند ِ کوپنهاگ   
âzand-e Kopenhâg

Fr.: interprétation de Copenhague   

A general heading which covers a wide variety of complex views on → quantum theory. As the first and the founding interpretation of the → quantum mechanics, it was developed in the late 1920's mainly by the Danish physicist Niels Bohr, but also Werner Heisenberg, Max Born and other physicists who made important contributions to the overall understanding of this field. Bohr expressed himself on the subject at various meetings and later published several articles and comments, but he never wrote a systematic and complete version of his views. There is not a unique Copenhagen Interpretation but various more or less complete versions, the common denominator of which is mainly the work of Bohr. Among those opposed to the Copenhagen Interpretation have been Albert Einstein, Erwin Schrödinger, Louis de Broglie, Max Planck, David Bohm, Alfred Landé, Karl Popper, and Bertrand Russell. The Copenhagen Interpretation recognizes that the deterministic picture of the universe that works so well at the macroscopic level does not work for the world at the quantum level. The universe at the quantum level is predictable only in a statistical sense. This implies that we can never really know the nature of quantum phenomena. The four cornerstones of the Copenhagen Interpretation are: → wave-particle duality, the probability → wave function, the → uncertainty principle, and the significance of the → observer. The observer is of the utmost importance because he causes the reality to unfold in the way it does. The key feature of the Copenhagen Interpretation is a concept known as the → collapse of the wave function, for which there is no known physical explanation; see also → Schrodinger's cat.

Copenhagen, from Dan. København "merchant's port," from køber "merchant" ("buyer") + havn "port," from the fact that the originator and chief interpreter of this school was Niels Bohr whose headquarters was in Copenhagen; → interpretation.

Copernican model
  مدل ِ کوپرنیک   
model-e Kopernik

Fr.: modèle copernicien, ~ de Copernic   

A model of the Solar System proposed by Copernicus in which the Sun lies at the center with the planets orbiting around it. In this model, the Earth is a planet, and the Moon is in orbit around the Earth, not the Sun. The stars are distant objects that do not revolve around the Sun. Instead, the Earth is assumed to rotate once in 24 hours, causing the stars to appear to revolve around the Earth in the opposite direction. This model readily explained both the varying brightness of the planets and the → retrograde motion. In the Copernican model the planets executed uniform circular motion about the Sun. As a consequence, the model could not explain all the details of planetary motions on the celestial sphere without → epicycles of the → Ptolemaic system. However, the Copernican system required many fewer epicycles than its predecessor because it moved the Sun to the center. Hence, Copernicus borrowed elements from variants of the Ptolemaic system developed by Middle Eastern astronomers, mainly the Iranian Nasireddin Tusi (1201-1274) and the Damascene Ibn al-Shatir (1304-1375), which Copernicus apparently knew about.

Nicolaus Copernicus (1473-1543), the L. rendition of the Polish original name Mikołaj Kopernik, author of the epoch making work De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres), published in 1543, in which he exposed his heliocentric system; → model.

Copernican principle
  پروز ِ کوپرنیکی   
parvaz-e Koperniki

Fr.: principe copernicien   

1) Physics: A basic statement that there should be no "special" observers to explain the phenomena. The principle is based on the discovery by Copernicus that the motion of the heavens can be explained without the Earth being in the geometric center of the system, so the Aristotelian/Ptolemaic assumption that we are observing from a special position can be given up.
2) Exobiology: By extension, human beings and the Earth are not at the centre of the → Universe and therefore are not "special". Life would therefore be commonplace. Compare → anthropic principle.

Copernican model; → principle.

coplanar forces
  نیروهای ِ هم-هامن   
niruhâ-ye ham-hâmon

Fr.: forces coplanaires   

A system of forces acting on a body that all are in the same plane.

com- + planar adj. from → plane.

copper
  مس   
mes (#)

Fr.: cuivre   

A malleable, ductile, reddish metal with a bright luster that is known from antiquity, and has been mined for some 5000 years; symbol Cu. → Atomic number 29; → atomic weight 63.546; → melting point 1,083.4°C; → boiling point 2,567°C; → specific gravity 8.96 at 20°C. Copper is an excellent conductor of heat and electricity and is widely used for various purposes, either pure or in numerous alloys such as bronze and brass in combination with → tin and → zinc. Its → radioactive isotopes have half-lives from 5.10 min (66Cu) to 61.0 hr (67Cu). Copper is mostly created inside → massive stars, via the → s-process, after they leave the → main sequence.

M.E. coper; O.E. coper, copor; cf. O.N. koparr, Ger. Kupfer, the original Germaic word from L.L. cuprum, contraction of L. Cyprium (æs) "Cyprian (metal)," referriing to the island which was the primary source of copper for the Romans, after Gk. Kyprios "Cypress," literally "land of cypress trees."

Mes "copper," of unknown origin; maybe related to Skt. māsaka- "a weight of gold;" Pali māsa- "a small coin, of copper, of very low value;" Prakrit māsa-.

copy
  پچن   
pacen (#)

Fr.: copie   

A reproduction, imitation; a thing made to be like another.

M.E. copie, from O.Fr. copie, from M.L. copia "reproduction, transcript," from L. copia "plenty," from → com- "with" + ops "power, wealth."

Pacen, from Mid.Pers. pacên "copy," ultimately from Proto-Ir. *pati-cak- "strike against, beat through," i.e. "stamp;" from *pati- + *cak- "to strike;" compare with Ger. Durchschlag "copy" literally "striking through;" related to câk "fissure."

copyright
  پچن-راشن، داتار-راشن، راشن ِ داتار   
pacen-râšan, dâtâr-râšan, râšan-e dâtâr

Fr.: droit d'auteur   

The legal right of the owner of intellectual property (such as a book, play, film, photograph, or piece of music). Simply put, copyright is the right to copy.

copy; → right; → author.

<< < -es -iv -ti 21- A r abe abs abs acc acc acc act act ada adi adu aff age alc Alf ali all alp alt ama amp ana ang ang ann ano ant ant ape apo app aps arc Arg ari art ass ast ast ast atm ato att aur aut axi B r bac Bal Bar Bar Bay bec Ber Bet Bie bij bin bio bis bla bla blu blu bol Bor bou Bra bre bro Bug C-s cal Cam can car Car Cas cat cav cel cen cer Cha cha cha che cho cir cir cir cla clo clo clu coa coe coh col col col com com com com com com com com com con con con con con con con con con con con coo cor cor cor cos cos cos Cou cou Cra Cre cri cro cub cur cyc cyl dar dat daw de- Deb dec dec dee def deg del Den dep der det deu dew dic dif dif dil dip dir dis dis dis dis dis div dog Dop dou dra dua dus dwa dyn e-m ear ecl eco eff ein Ein elb ele ele ele ele Els emi emp ene enr env epi equ equ Eri est Euc eva evo exc exc exh exo exp exp ext ext f-n Fah fam fau fee Fer fib fil fin fir fix fle flu foc for for for fra fre fre fri fun fuz gal gal gal Gan gau GCN gen geo geo geo geo Gl glo gra gra gra gra gra gre gro GW1 hab hal han HAR haz hea hel hel Hen Her heu Hig Hil hol hop hor hou Hub Hum Hyd hyd hyd hyp hys ide ign ima imp imp inc inc ind ine inf inf inf inh INP ins ins int int int int Int int int int inv ion iri irr iso iso iso Jea Jos Jun K2 Kep key kin Kol lag lam Lan lar las lav lea leg len lev lig lim lin lin lin lis lob loc log lor low lum lun lun Lym Mac mag mag mag mag mag mai Mal mar mas mas mat max mea mea mee Men mer met met met mic mid Mil min Mir mix mod mod mol mon Mor mou mul muo mys nan nat nav nec Nep neu New New NGC nob nom non non nor not nuc nuc num Nyq obj obs obs oce oen OH omn opa ope opt opt opt orb ord Ori ort osc out ove oxy pal pan par Par par par pas pea Pen per per per per per pet pha pho pho pho phy pie Pit Pla pla pla pla ple Poi pol pol pol pol pop pos pos pow pre pre pre Pre pri pri pri pro pro pro pro pro pro Pro pub pul pyr qua qua qua qua Qui rad rad rad rad rad rad ram ran rat rea rec rec rec red ref ref reg reg rel rel rem rep res res res ret rev rho Rie rim riv rol Ros rot rul S a Sah san Sat sca Sch Sch scr sec sec sec sei sel sem sep set sha she sho sid sig sil sim sin sit sky slu sno sof sol sol sol sol sou sou spa spa spe spe spe sph spi spl spr sta sta sta sta sta ste ste sti sto str str sub sub sub sug sun sup sup sup sup sur syl syn sys tal Tay tel ten ter tex the the the thi tho thu tid tim tod top tot tra tra tra tra tri tri tro tru tur twi Typ UFO ult unc uni uni uni upg ura uti val var vec vel ver ver vig vir vis voc von wak Was wav wax wea wei whi Wie win WN6 wom X-r yel you zer zod > >>